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ABSTRACT

Several aerodynamic mechanisms, which will sus-

tain large angle of attack body autorotative motions, are

examined. It is shown that autorotative motion can result

in a very large drag force, which may significantly aid

missile and booster recovery.

A linear theory, which satisfactorily predicts the

near-steady-state autorotative spin characteristics of quasi-

axi-symmetric bodies, is presented. The initiation of body

autorotative motions under both low altitude and re-entry

environments is investigated by a special six-degrees-of-

freedom trajectory program.

The aerodynamic characteristics of cylinder-shaped

bodies at angles of attack near ninety degrees are discussed.
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I. INTRODUCTION

There exists a need for an inexpensive and reliable technique

which will restrict or control the descent velocity of missile payloads,

air-droppable stores, and expended boosters. One means by which the

descent velocity of a body may be reduced is by initiation of a flat spinning

motion such that the body continuously presents a large fraction of its

maximum projected area to the free airstream. Because of the large

increase in both the drag area and the drag coefficient as the angle of attack

is increased to near 90 degrees, the deceleration at very large angle of

attack can be many times greater than that of the same body in normal

stable flight at small angle of attack. Autorotative spinning (or yawing)

motion is one means by which a large angle of attack can be developed

and sustained.

An initial analytical investigation of body autorotative motions at

large angle of attack was accomplished in 1961 by the Advanced Technology

Division of Electronic Communications, Inc. under Air Force contract

AF 29(600)-2936. The most significant accomplishment of this initial work

was the development of a six-degrees-of-freedom trajectory program for

the UNIVAC 1103A digital computer at Holloman Air Forre Base. By use

of the computer program, the autorotative motion of a small, rapidly rolling

cone-cylinder body was investigated for a wide range of conditions including

variations in center of mass, initial roll and yaw spin rates, and initial

velocity and altitude. These studies are summarized in Reference 1.
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The principal tasks specified for the present contract were:

1) Investigations concerned with assessment of

characteristic effects encountered during the

transient and equilibrium phases of an auto-

rotative motion.

Z) Parametric studies of body configurations

exhibiting a self-sustained motion in a variety

of environmental conditions.

3) Extraction of significant parameters favorably

affecting the recovery phase and the stability

regions of pertinent shapes.

4) Examination of computational procedures and

computer sub-routines for increased efficiency

in large-scale computations and accuracy

improvements.

To effectively accomplish objectives (1), (2), and (3), it was at

once recognized that a simplified theory for the autorotative motion of

bodies at large angle of attack would be required. Previous work had

illustrated an effective approach to this problem by application of the

small perturbation theory. By establishing theoretical relationships

between desired autorotative motions and body physical and aerodynamic

characteristics and flight environments, it would be possible to provide

the required understanding of body autorotative motion.

The principal results of the work on the outlined tasks, including

the development of the new theory for autorotative motion, are described

in this report. The material has been organized such that the reader is
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first acquainted with the aerodynamic problems associated with bodies at

large angle of attack. Several aerodynamic mechanisms capable of sus-

taining large angle of attack autorotative motion are also described, along

with the problem of incorporating these effects into the equations of motion.

This material constitutes Section II of the report.

Because of the enormity of the aerodynamic data which must be

provided for each body configuration, the more extensive investigations

in this program have been limited to two basic bodies: 1) a fineness-ratio-

eight cone-cylinder representative of a small missile, and 2) a body

representative of a large liquid propellant booster of the Saturn class.

Complete geometric, inertial, and aerodynamic data for the two body

configurations have been presented in Section III for easy reference.

Section IV is devoted to the changes which have been made in the

six-degrees-of-freedom trajectory program. Results obtained from the

numerical integration of the complete equations are presented in subsequent

sections.

The new autorotative motion theory is summarized in Section V,

and the detailed development of the equations is presented in Appendix III.

The steady-state solutions as obtained from the linear theory are interpreted,

and both the static and dynamic stability of near steady-state motions are

discussed. Finally the linear theory is compared with numerical results

obtained from the complete equations of motion.

Quantitative results from a number of specific trajectory and motion

studies are presented in Section VI. The results are based on both the newly

derived equations for steady-state autorotation rate and attitude, and numeri-

cally integrated motion histories and trajectories. The various parameters

affecting autorotation development are investigated for both low altitude

and re-entry flight conditions. The differences between Magnus and
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non-Magnus spins are clearly illustrated, and the effects of variation in

center of gravity, roll spin rate, and spin propelling moment are indicated

from parametric studies. The effectiveness of an autorotative motion in

limiting the dynamic pressure and aerodynamic heating environments during

re-entry is shown by comparisons with both tail-first and tumbling re-entry

trajectories.
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II. GENERAL AERODYNAMIC CHARACTERISTICS OF BODIES

AT LARGE ANGLE OF ATTACK

The study of large angle of attack autorotative motions for missile

recovery is impossible without a detailed knowledge of:

1) The autorotative moment, and its dependence

upon the body attitude and motion.

2) The aerodynamic stability derivatives, which

represent the response of a given body to its

angle of attack, flight velocity, Mach number, and

angular motion.

3) The body retardation force, and its variation with

angle of attack, Mach number, Reynolds number,

and body geometry.

These considerations will be discussed in the following paragraphs.

A. AUTOROTATIVE YAWING MOMENTS

It was shown in Reference 2 that a large angle of attack cannot be

sustained without yawing (spinning) motion unless the aerodynamic center

of pressure is nearly coincident with the center of gravity. For this study,
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the most general case of an untrimmed aerodynamic overturning moment

is considered, and we will examine several aerodynamic systems for

generation of pro-spinning moments, such that the inertial forces will

stabilize the unbalanced overturning moment. If the body has some yaw

angular velocity, then the local velocity vector at body sections displaced

from the center of rotation will be canted to one side as illustrated in the

following sketch

V
V
N

If the body has an aerodynamic force system in which the local cross

forces are in line with the local velocity vector, then the yaw component

of the local force will resist the yaw angdlar velocity. This is the normal

or anti-spinning condition as illustrated in Figure 1.

Non-Circular Cross Section. In the case of a non-circular body

cross section, Polhamus, Reference 3, has shown that the direction of

the cross force is strongly dependent upon both the Reynolds number and

6



the direction of the cross velocity vector relative to the bodý cross section

as illustrated in Figure 1. A typical variation of side force coefficient with

flow angle,+, for a modified-square cylinder is illustrated in Figure 2. As

#becomes greater about 8 degrees, it will be noted that the side force and

spin propelling moment decrease, and at about 14 degrees, the side force

begins to resist the angular motion. Because of this characteristic, the

maximum tip speed ratio is limited to about r I /2V m 0. 3 with this force

mechanism. It will also be shown, subsequently, that much greater side

force coefficients for a wider range of tip speeds can be obtained from

either the Magnus effect or from a small flap on a circular cylinder. For

these reasons, the non-circular cross section will not be discussed further.

Magnus Force. The aerodynamic Magnus effect is the most

natural phenomenon for development of an autorotative moment because

it is inherently oriented normal to the flight velocity vector. Therefore,

as long as some angle of attack exists, and the Magnus center of pressure

and the body center of mass are not coincident, an autorotative moment

will exist.

The aerodynamic Magnus force on bodies of revolution, including

the effects of Reynolds number and surface speed, has been investigated

extensively by H. Kelly of the Naval Ordnance Test Station, Reference 4.

The aerodynamic Magnus force on finite length cone-cylinders for angles

of attack from zero to 90 degrees has also been measured experimentally

in the WADD 20-foot subsonic wind tunnel as part of the original Air Force

investigation of autorotative recovery, Reference 5.

The accumulated subsonic experimental Magnus force data show

a large dependence of the Magnus force on the cylinder cross flow Reynolds

7



number, especially in the subcritical and critical Reynolds number ranges.

However, at large supercritical Reynolds number, the Magnus force becomes

a nearly constant linear function of surface speed ratio and the two-dimensional

Magnus lift coefficient Cqp has a value of about 4 per radian at small values

of pd/2V.

The effect of fineness ratio on the aerodynamic Magnus force at

subsonic velocity is small, and available data indicate that the two-dimensional

Magnus force coefficient will be reduced less than about 10 per cent for

fineness ratios greater than 5. There is also a decrease in the Magnus force

derivative CN with increasing surface speed ratio, but this effect is alsoCp

small for smooth bodies with values of pd/2V less than about 0. 4.

There is also a question as to the effect of protuberances on the

Magnus force at large angle of attack. For example, in practical appli-

cation of a Magnus-type autorotation it would be desirable to initiate and

sustain the roll rate through the use of aerodynamic vanes or rotors. Tests

of a rib-type rotor similar to that depicted in the sketch below were made

in the University of Maryland subsonic wind tunnel, Reference 6, and

surface speed ratios as large as 0. 39 were obtained with this type of

rotor on a fineness-ratio-four cylinder at an angle of attack of 90 degrees.

I Wind

RIB-TYPE ROTOR
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A correlation of subsonic Magnus force data at 90 degrees angle

of attack from References 4, 6, 7, and 8 is presented in Figure 3. The

effects of low aspect ratio fins and the rib-type rotor are depicted, in

addition to the effect of body fineness ratio. All of the data are for super-

critical cross flow Reynolds numbers. At surface speed ratios greater

than about 0. 3, the Magnus force is seen to decrease rapidly when the

protuberances are present. However, at lower surface speed ratios

the protuberances do not appear to reduce the Magnus force.

The effects of angle of attack and Mach number on the Magnus force

are illustrated in Figure 4. All of the data are for smooth cylinders. The

increase in the Magnus force coefficient at angles of attack between approxi-

mately 40 and 60 degrees is not fully understood, although this phenomenon

has been noted in other data not shown. Since the cross flow Reynolds

number decreases at angles of attack less than 90 degrees, it would be

anticipated from cross flow theory that the Magnus force would also decrease,

since Kelly has shown that the Magnus force coefficient decreases with

decreasing Reynolds number in the supercritical Reynolds number range.

It must therefore be concluded that the axial flow and boundary displacement

effect play an important role in the intermediate angle of attack range.

The data presented in Figure 4 for Mach numbers above the cylinder

critical Mach number have been obtained from References 9 and 10, which

were not available for the earlier investigations reported in Reference 1.

Unfortunately, the Magnus effect is seen to decrease very rapidly for Mach

numbers above the cylinder critical Mach number, and at Mach numbers

above unity, the two-dimensional Magnus force coefficient is reported to

be less than 0. 05. This rapid decrease in the Magnus force with increasing

Mach number is primarily a result of the circulation being restricted to

the subsonic portion of the boundary layer and the wake. Because of the

9



extremely thin boundary layer on the forward portion of the cylinder, it

is reasonable to assume that nearly all of the circulation is confined to

the wake and the aft portions of the boundary layer where separation occurs.

So far as is known, Magnus force data on inclined spinning bodies

at transonic velocities have been measured only at angles of attack less

than about 40 degrees. As can be seen from Figure 4, the Magnus force

can exceed the two-dimensional value in this intermediate angle of attack

range. At transonic velocities, this characteristic would be expected if

the Magnus force were primarily dependent upon the cross flow Mach number.

In Reference 10, Magnus force data on inclined bodies were plotted versus

the cross flow Mach number, and a rough correlation was found to exist,

thus supporting the observed increase in Magnus force at intermediate

angles of attack.

Effect of Flaps on a Circular Cylinder. Recent experiments by

Lockwood, et al, of NASA, References 11 and 12, have shown that a

small flap can generate a significant amount of circulation and lift on a

circular cylinder with large cross flow. Although most of the tests have

been two-dimensional, the data should be approximately applicable to

finite length cylinders. Both single and double flap arrangements have

been investigated, as well as the effect of flap angular position and chord

length. The lift generated by a longitudinal flap or strake can be used

for producing an autorotative moment by placing the center of lift well

forward or aft of the center of mass.

Two-dimensional subsonic lift and drag data for a circular cylinder

with various flap arrangements are presented in Figure 5. These data were

taken from Reference 11, and in all cases, the flap chord to body diameter

ratio c/d is only 0. 06.

10



Of particular interest is the large lift which can be obtained at

Reynolds numbers greater than 3. 6 x 10 , and the large drag increase

which occurs with addition of flaps at large Reynolds numbers. The

smooth cylinder drag coefficient at large Reynolds numbers is seen to

be increased by a factor of about 6 by the addition of the double flaps

180 degrees apart. The effect of flap angular position is also shown

in Figure 5. These data indicate that the lift of a fixed flap will stay

positive even though the local cross flow is rotated as much as + 50

degrees. This is in great contrast to the results which were described

earlier for the non-circular cylinders.

The effects of flap chord and Mach number on the lift character-

istics of a circular cylinder are illustrated in Figure 6. The data are

taken from Reference 12. For low subsonic Mach numbers, it is evident

that a flap chord to body diameter ratio, c/d, of only about 0. 02 is required

for a lift coefficient of 1. 0. With increasing Mach number, the flap chord

must be increased to maintain lift effectiveness, and at Mach numbers of

0. 5 and greater, the maximum lift is attained at a c/d of about 0. 25. For

flaps of constant chord, a large reduction in lift will occur at transonic and

supersonic Mach numbers, but the reduction will be considerably less than

that which has previously been described for the Magnus force. At the

highest Mach number tested, M = 1. 9, a straight flap of chord ratio

c/d = 0. 1 produced a CL of 0.3. At higher Mach numbers the flap

could be canted with the trailing edge downstream; for example, with

45 degrees deflection, a Newtonian section lift coefficient of 0. 1 would

be obtained for a projected flap chord to diameter ratio of 0. 1.

Several cylinder body configurations have been devised which can

effectively utilize the lift and drag characteristics of flaps. The most

effective combination is shown in the following sketch.

11
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The single flaps at the end of the body provide the yawing or spin

propelling moment, and the double flaps in the center provide additional

drag. Because of the symmetrical arrangement of the flaps, a rolling

moment due to flaps is eliminated. The autorotative and spinning character-

istics of this type of configuration will be discussed in a later section.

B. AERODYNAMIC STABILITY DERIVATIVES

In addition to the aerodynamic spin propelling moments described

heretofore, the static aerodynamic overturning moment in the plane of the

total angle of attack, and the moments due to body angular velocity are

important quantities which will be found represented in both the exact

and approximate equations of motion. Fortunately, Murphy and Nicolaides,

Reference 13, have shown that the aeroballistic derivatives for symmetrical

bodies are idencial for both missile-fixed and fixed-plane coordinates, if

12



the body accelerations are neglected. Consequently, in the exact equations

of motion, Appendix II, the aerodynamic contribution will be seen to be the

same for both coordinate systems. In the following discussion we also

treat the dependence of the aerodynamic force system on the angle of attack

in generality, and the results are applicable to either coordinate system.

Aerodynamic derivatives for bodies at large angle of attack are

strongly influenced by the body end configuration. In the previous contract,

Reference 1, aerodynamic data were examined only for the case of cone-

cylinder bodies. However, many configurations which might be considered

for autorotative large angle of attack recovery, such as booster rockets,

are typically blunt-ended. Consequently, the aerodynamic characteristics

of flat-ended cylinders have been examined in some detail during the course

of the present contract.

Static Pitching Moment. The variation of the static overturning

moment with angle of attack can best be characterized by considering the

normal force and the center of pressure separately. A correlation of

center-of-pressure data for flat-ended cylinder bodies is presented in

Figure 7. Both subsonic and supersonic Mach numbers are represented.

The data are from References 6 and 14. For subsonic Mach numbers, the

center-of-pressure variation with angle of attack is nearly defined by a

single curve. At supersonic Mach numbers the center of pressure

approaches the centroid of the cylinder for all angles of attack greater

than about 20 degrees.

A correlation of the normal force coefficient with angle of attack

has been made for both subsonic and supersonic Mach numbers. For

large angles of attack (i. e. , near 90 degrees), no consistent trend is
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observed in the subsonic normal force data, Figure 8, even though all

of the data are at supercritical Reynolds numbers. However, in all

cases, the values of CNT/CN./2 for large angle of attack exceed the

sin 2a variation representative of sweep or cross flow theory.

For supersonic Mach numbers, the normal force coefficients

closely follow the Newtonian theory, as can be seen from Figure 9.

Aerodynamic Derivatives Dependent Upon Angular Velocity.

The aerodynamic response to body angular motion is extremely important

in the analysis of autorotative yawing motion. In particular, the effect

of p, q, and r on the moments about the y and z axes must be known.

Because the body configurations considered in this report are essentially

axi-symmetric, it suffices to investigate only the effects of p and r, if

we consider all of the velocity components u, v, and w independently.

For large angle of attack, the body aerodynamic force distribution

can be assumed to depend almost entirely upon the local cross flow. Based

on this assumption, a complete analysis of the aerodynamic moments due

to transverse angular velocity and roll spin at large angle of attack has

been accomplished, and the details are presented in Appendix I.

The analysis indicates that, to the first order, only the derivatives
Cnr, CM , and CMpr need be considered for large angle of attack motions.

Integral expressions for these derivatives are then derived. It must be

pointed out that Cn, CM , and CM are not aeroballistic (i. e. , they arepoite ou tat nrCq, Cpr

not related to the complex cross angular velocity, q + i r), and they must

be interpreted in light of the coordinate system which is used. Also, they

are not constants, but have a functional dependence upon the magnitude of

the angular velocity components, as well as the linear velocity components,

u, v, and w.
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The only known experimental data available to substantiate the

theoretical angular velocity derivatives are the measurements of Reference 5,

This reference confirms the estimated value of Cnr obtained from equation

(15) of Appendix I within about 20 per cent, when the estimated derivative is

based on an equivalent CDC adjusted for body end effect as suggested in

Appendix I. The data in Reference 5 were obtained for tip speed ratios,

r I /2V, less than 0. 45. Consequently, the predicted non-linearity of

Cnr at large tip speed ratios (i. e. r I /2V in excess of 1. 0) was not

observed.

The derivative CMpr qualitatively describes the results in

Reference 5, which show a significant variation of the pitching moment with

combined roll and yaw rates. Quantitatively, the theory of Appendix I was

found to overestimate the value of CM pr. However, it is not known whether

this one case is representative. It is, however, quite possible that the local

Magnus force is smaller near the ends of the body. In this case, the magni-

tude of CMpr would be considerably reduced.

A serious problem arises when it is attempted to apply the theoretical

values of the angular velocity derivatives to a rolling body-axis system,

because, in this case, the derivatives Cnr, CM , and CMpr become

periodic with the rolling motion. Since it is impracticable to account for

such periodic behavior, it is necessary to assume in this case that Cnr = CMq

and CMpr = 0.

When fixed-plane axes are utilized and the angle of attack is near

90 degrees, Cnr, CM , and CMpr can be introduced independently into

the equations of motion without complication. The further assumption of

V = w allows these derivatives to be evaluated in closed form, although

they are still non-linear.
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C. BODY DRAG

The drag of a cylinder body is influenced by angle of attack, Mach

number, Reynolds number, fineness ratio, and protuberances such as flaps

and rotors. An understanding of these effects is obviously a necessary part

of any study dealing with aerodynamic deceleration of bodies.

Since much of the more recent experimental data have not been

adequately correlated for the purposes of this program, an effort has been

made to determine the salient features of the aerodynamic drag force.

The effects of fineness ratio and Reynolds number on the low-speed

crosswind drag characteristics of cylinder bodies are adequately described

in Reference 15, and the more recent data examined are in agreement. The

most significant aspect of the low-speed data is the fact that the drag does

not decrease with decreasing fineness ratio in the supercritical Reynolds

number range, contrary to the results for low Reynolds numbers.

At transonic Mach numbers, the effect of fineness ratio is illustrated

by the use of the parameter, 11 , which is the ratio of the drag coefficient of

a circular cylinder of finite length to that of a cylinder of infinite length.

Figure 10 presents the variation of y with fineness ratio for Mach numbers

of 0. 6 and 1. 2. For comparison, the curve for RN = 88,000 is reproduced

from Reference 15. It is of interest that the 17 values at 0. 6 Mach number,

which average about ly = 0. 6 for fineness ratio less than 8, are in general

less than the value of 17 at low Reynolds number. At Mach number 1. 2, the

drag proportionality factor, i , approaches unity at a fineness ratio of about

20.

Until recently, the transonic cross flow drag of finite length cylinders

had not been measured accurately. Now, free-flight tests have been reported,

Reference 16, which show the drag of a fineness-ratio-3. 5 cylinder for
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Mach numbers ranging from 0.4 to 3. 0. These data are represented here

as Figure 11. For comparison, the infinite cylinder drag curve, obtained

from the correlated data in Reference 10, is illustrated. Since the drag

peak for the fineness-ratio-3. 5 cylinder is very flat, it is clear why 77

does not increase until the Mach number exceeds the Mach number at the

infinite cylinder drag peak. For Mach numbers above 2. 0, it can be seen

that 7 = 1 even for the 3. 5 fineness ratio cylinder.

The relatively small cross flow drag coefficient of the smooth

circular cylinder at low subsonic velocity and at supercritical Reynolds

numbers, which are the conditions under which most bodies will impact

with the earth, has been of concern because it diminishes the recovery

effectiveness of a large angle of attack descent. Consequently, the effects

of protuberances on cylinder cross flow drag have been investigated, since

flaps and rotors are being considered as possible mechanisms for achieving

autorotation moments. It is found that the smooth cylinder drag coefficients

are increased by a factor of about Z. 5 in the supercritical Reynolds number

range if either a single flap is placed normal to the flow, or a cylinder with

several fin-like appendages is rotated. Thus, single flap or rotor-type

appendages on a given fineness ratio body result in cross flow drag coefficients

very near those at subcritical Reynolds numbers. Even further drag increases

are indicated for double flaps, as was illustrated in Figure 5.

There has also been the question of the angle of attack for maximum

drag, particularly at terminal descent conditions. Examination of data from

References 6 and 7 for flat-ended cylinders shows that the maximum drag

coefficient is obtained at an angle of attack of about 70 degrees (or 110

degrees) at low subsonic velocities.
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III. BODY CONFIGURATIONS AND BASIC DATA

To make the results of the theoretical and analytical investigations

as realistic as possible, two general body configurations have been selected

for study. One body is a fineness-ratio-eight cone-cylinder, representative

of a small missile payload; the other body is a fineness-ratio-3. 97 circular

cylinder representative of a Saturn class liquid propellant booster. The

physical characteristics of these bodies are presented in Tables I and II,

and the data are typical of existing or proposed vehicles. The weight and

inertia data for the large booster are representative of the empty config-

uration which would exist after payload separation and prior to re-entry.

Aerodynamic data for the two configurations have been estimated

from the references which are described in Section II. Unfortunately,

the estimated variations of the aerodynamic coefficients with angle of attack

cannot be re-constructed exactly from the stability derivatives which are

included in the six-degrees-of-freedom equations of motion (see Section IV).

This is a result of the fact that the power series expansions for CN, CNp,

7& -3 *5
CM) and CMp, include coefficients for only • , , and a , and the

expansion for Cx includes only Cx and a coefficient dependent upon G

Although the above expansions are quite adequate when all of the aerodynamic

force and moment variations are symmetrical about VIZ radians angle of

attack, the axial force and the moments are typically non-symmetrical, and

this makes the fitting process more difficult, especially for the complete

angle of attack range 0 - V radians. The derivatives which have been used

in the six-degrees-of-freedom numerical solutions are tabulated in Tables I

and II.
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In the linearized two-moment equations of motion, extensive use is

made of the coefficients CMr/2 and CMp 7 / 2 , which are the pitching

moment and Magnus moment coefficients, respectively, at 90 degrees angle

of attack. Consequently, these coefficients have also been tabulated for the

basic centers of gravity.

In the case of the large booster, two separate concepts have been

investigated for generation of the autorotation moment. For some studies

the booster is assumed to be rolling with a small surface speed ratio,

pd/2V. The surface speed ratios considered have been small enough such

that they could be produced by very small axial ribs, such as those shown

in the sketch on page 8 . The details of the rotor have not been considered

in this report, but the following assumptions have been made relative to

its effect on the body:

1) The rotor does not change the vehicle mass or

moments of inertia.

2) The rotor causes sufficient separation of the cross

flow that a cross flow drag coefficient of C = 1. 15

is obtained at low subsonic velocities.

3) The rotor will be able to develop a surface speed ratio

of at least 0. 3, at 90 degrees angle of attack.

4) For a given rotor, the body roll angular velocity is

constant at all angles of attack.

For other studies, the large-booster spin propelling moment has

been assumed to be produced by a flap system such as that described in

Section II. In general, the flap geometry has not been specified in detail,

but rather, constant values of the spin propelling moment have been
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selected for the various flight regimes. All of the spin propelling moments

considered could be obtained with flaps of no greater chord than 0. 2 body

diameters.

The problem of providing the correct roll orientation of the flaps

has not been considered, as this is a mechanical detail. From a practi-

cable point of view, the booster roll control system could satisfy this

requirement. The cross flow drag coefficient of the booster with flaps

was taken to be identical to the value used for the rolling booster.

The aerodynamic derivatives and coefficients for the small

fineness-ratio-eight cone-cylinder body are based on the data of

Reference 1, and are for a smooth surface. For this body, the roll rate

is assumed to be generated by non-aerodynamic means and for each

trajectory, the roll rate is constant.
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IV. SIX-DEGREES-OF-FREEDOM TRAJECTORY PROGRAM

FOR UNIVAC 1103A DIGITAL COMPUTER

Equations of Motion. Six-degrees-of-freedom equations of motion

for rolling and spinning axi-symmetric bodies were developed during a

previous contract, Reference 1, and programmed for numerical solution

on the UNIVAC 1103A digital computer at Holloman Air Force Base,

New Mexico. The program allows for optimal use of the body-fixed or

fixed-plane axes, as depicted in Figure 12.

An angular orientation scheme based on quaternions is incorporated,

which permits motions to be computed for all possible body attitudes, without

angular rate discontinuities, when the body-fixed axes are selected. The

fixed-plane axes have a singularity at 8 = IT/2, which precludes this axis

system being used for motions with very large pitch amplitude.

The basic equations of motion for the computer program are presented

in Appendix II. The equations are identical to those used in Reference 1,

except that the linear aeroballistic damping derivative CM, has been replaced

by the non-linear aerodynamic damping derivatives Cnro, Cnr2, CMqo,

and CMqZ, and the new derivative CMpr has been added to account for the

distortion of the Magnus moment at large tip speeds. The numerical

integration is accomplished using Milne's four-point method of prediction,

and Simpson's rule for correction.

21



Integration Error. The basic equations of motion do not include

the quaternions in their normalized form, so that after many integration

intervals, small errors develop. Although a method for quaternion

normalization is readily available, Reference 19, it could not be incor-

porated in the UNIVAC 1103A computer program because of the limited

data storage capacity. To prevent the integration from continuing after

appreciable error had developed, the stop condition

Z (• X X 2 l XX3) M 1.05

was made a basic part of the program. Examination of the trajectory data

shows that the test criteria was usually satisfied when the average error

of the quaternions, as calculated by the error equations of Reference 1,

exceeded about 1 x 10- 3. It was further observed that one or more of

the body attitude or angular rate variables became erratic when the

quaternion error reached a magnitude of about 1 x 10-5.

Consequently, it became necessary to predict the number of inte-

grations which could be accomplished without exceeding an average

quaternion error of about 1 x 10- 5. For better visualization of the quat-

ernion error build-up, one trajectory was repeated with different time

intervals, and the average quaternion error (order of magnitude) plotted

versus time. These results are shown in Figure 13. It can be seen that

not only the initial error, but also the rate of increase of quaternion error,

is influenced by the integration time interval. For a fixed quaternion error

limit, the duration of integration is approximately proportional to the

inverse of the integration time interval.

The rate of increase of quaternion error also depends upon the

oscillatory motion of the body. For steady motions, a correlation was
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established between the system angular rates, the integration time interval,

and the time required for the quaternion error to reach a magnitude of

1 x 10 5. The maximum integration time was found to be given approximately

by the empirical equation

t - 5max & At

where the angular rate W is usually the yaw rate.

For trajectories of relatively long duration, such as during re-entry,

where the angular rates are not constant, it was found expedient to break

the trajectories into two or more segments, each with an appropriate inte-

gration time interval. The second and subsequent segments were re-

initialized using the output data from the last interval of the previous

segment.
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V. A SIMPLIFIED THEORY FOR THE AUTOROTATIVE MOTION

OF BODIES AT LARGE ANGLE OF ATTACK

Of great interest in the general study of unstable motion is the

steady, nearly-flat, autorotative spin. Analytical solutions for the motion

of fully developed autorotations can provide the means for rapid assessment

of the effects of the basic body and flight parameters on the spin characteristics.

In addition, analytical solutions for the motion permit a much more compre-

hensive stability analysis to be accomplished.

The only previous comprehensive linear theory for the flat spin,

which has been found in the literature, is an investigation of aircraft flat

spins, accomplished by linearization of the three-moment equations of

motion in body axis form. This work was reported by Klinar and Grantham,

Reference 20. The three variables selected for their system of linearized

equations were A 8, Ar, and A6. The stability of the aircraft flat spin was

subsequently investigated in terms of the initial yaw rate and the aero-

dynamic derivatives CI18 and Cn9

If the autorotative motion of a simple cylinder body is treated in a

similar manner, several complications develop. First, we would want to

consider large roll rates so that the Magnus force could be included.

Second, in the airplane, strong aerodynamic couplings exist between the

rolling and yawing degrees of freedom which can be used to determine the

sideslip angle 83. However, for a simple cylinder body, the rolling

degree of freedom does not provide relationships between A8, Ar, and

AR . Third, Klinar and Grantham considered only the normal linear

aerodynamic derivatives. Such derivatives do not adequately describe the

aerodynamic characteristics of a simple cylinder or cone-cylinder body at

large angle of attack.
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An initial analysis of the body spin problem, using the same three

variables,A8 , Ar, and A/, was undertaken by the author in 1961 and is

summarized in Reference 1. An important factor in the initial analysis

was the use of a fixed-plane coordinate system, such thac a steady roll

rate could be considered without the addition of the rolling degree of

freedom. For evaluation of the sideslip angle, 0 , the equation for lateral

translation was added. The equation for lateral translation contained both

8 and P as variables, and the coupling was due to the y component of the

Magnus force. The introduction of lateral translation into the system of

equations was equivalent to assuming that the body would descend along a

helix, rather than along a straight-line type of trajectory. The resulting

system of equations was of fourth order, and no simple analytic solutions

for the steady-state motion were derived. In addition, the stability analysis

became quite complex, and results could only be obtained by numerical

evaluation of the roots and stability boundaries.

During the course of the present program, an investigation was

made of the relationship between the yawing motion and the lateral

translation to determine the desirability of using the translatory degree

of freedom. A review of the available six-degrees-of-freedom trajectory

data showed that the translatory motion was almost totally independent of

the yawing motion. The six-degrees-of-freedom data showed that the

is oscillations are due almost entirely to the translatory motion which

develops during the first fractional cycle of yawing motion. Thus in

actuality, the 0 and 8 motions are unrelated, and the assumptions made

in the previous linear equations regarding the Magnus force coupling

are not valid. Because of this, only the pitching and yawing degrees of

freedom have been considered in the present analysis.

The detailed development of the two-moment equations of motion

for a spinning body at large angle of attack is presented in Appendix III.

Appendix III contains, in addition, the equations for the steady-state motion

25



and also the equations describing the system stability, and approximations

of the roots of the characteristic equation. A very important aspect of the

new theory is the inclusion of more realistic variations of the aerodynamic

moments with angle of attack, wherein the coefficient variations are assumed

to vary as the product of the sine of the angle of attack and the magnitude of

the coefficients at 90 degrees angle of attack.

In the new theory, the steady-state solutions for the autorotation

rate and spin attitude are obtained in a very useful form. Also, because

of the use of the fixed-plane coordinates, the steady-state solutions can

be presented in terms of the Eulerian quantities, 8 and * , thereby

permitting a direct physical interpretation of the motion of bodies in

vertical descent.

A. STEADY-STATE SOLUTIONS

For Magnus-type autorotations where the roll rate is large, the

steady-state yaw rate and autorotation attitude are found to be (see Appendix III)

GMp 7r./ p cos es6S

ss Cnr

or CMp 7r/P (2)
*ss = Cnr

and si j KGP CM p/2 [I "KL2 CM'rI (2)sin KM CM/ 21" 2 (2)

sn [ScMp/pCnr ]
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The new linear theory also describes slowly rolling spins in which the

spin propelling moment is provided by a body-fixed flap or strake. In

this case we obtain for the steady-state yaw rate and autorotation attitude

GMzor - (3)
ss LCnr

or
CMzo

iss=L Cnr cos 8ss

and sin = A + (- + 1 (4)

where ICi lx
L Cnr I

CMzo 2K CM /2

For very flat spins, we have even more simply

1
tan ess = .7 (5)

Interpretation of the Steady-State Solutions. It is interesting that

equations (1) and (3) give a result which would almost intuitively be expected,

that is, that the steady yaw rate would be the forcing moment divided by the

damping moment. The results for the steady-state autorotation attitude

would be more difficult to surmise, although it will be noted that in both

equations (2) and (5), the denominators contain the yaw rate squared. This

might have been expected, since part of the inertial force, the centrifugal
2

effect, is dependent upon r .
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In regard to the autorotation attitude, the following generalizations

can be made. First, it can be seen that the autorotation attitude will be

increased positively for a positive pitching moment at a = 1/2. This

would also be intuitively expected.

For Magnus -type autorotations, the second term in equation (2)

can play a dominant role. The sign of this term also depends upon the

sign of the Magnus moment coefficient. Since Cnr is typically negative,

we can see that autorotation will occur at a smaller a when CM pi/ 2 is

negative. The derivative CMpr is also typically negative, and thus tends

to increase the effective value of the inertia ratio, I /I in equation (2).x

When the Magnus moment has a very large negative value, it is possible

for the body to autorotate in a nose-down attitude, even though the pitching

moment is nose-up. Contrary to what might be expected, the roll spin

direction does not affect the direction in which the autorotation attitude
2

changes, because p appears only as p .

If the body center of gravity is near the midpoint, such that the

aerodynamic pitching moment, CM ./ , is zero, we obtain the interesting

result that the autorotation attitude, 8 , is independent of the roll spin rate,

inversely proportional to the Magnus moment, and directly proportional to

the yaw damping. Thus, for configurations with small overturning moment,

increasing roll spin rate is not an effective way to make the autorotation

flatter.

Another interesting point which can be made is relative to the

possibility for an autorotation where the body roll rate is only the component

of the azimuth spin rate, i. e. , p = - V sin 8. This occurs when the total

angular velocity vector is aligned with the velocity vector. This is also

the manner in which the spin tests of Reference 5 were conducted.

28



Substituting p = - • sine into equation (1), we can see that

CM pi/2 sin -

Cnr

Since Cnr is typically negative, the equation is only satisfied for CMpi./2

positive. For bodies with aft centers of gravity, CNp,/2 would also

have to be positive, thus implying that this type of spin can be self-sustaining

only at subcritical or supercritical Reynolds numbers, where CNpw,/Z is

always positive.

Similarity Parameters. To more clearly illustrate the effects of

body geometry, inertial characteristics, and the air density on the steady-

state autorotation characteristics, equations (1) through (5) can be trans-

formed into new variablcs, which can subsequently be combined into similarity

parameters. Configurations or flight conditions leading to the same similarity

parameters will then have identical autorotative characteristics.

If the equilibrium descent velocity is assumed to exist at all altitudes,

and if further, the descent velocity can be assumed to be independent of the

body pitch attitude for reasonably flat autorotations, then we can introduce

V= 2W
PA S CDC

This, together with the following expressions for
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S d

w M P gdl

Vr d 2 K 24T PB

x 4 - PB 7 2 k

41
CM W/2 = CDC F dd2 &Xc.P.

p 1 J1 = constant
L

Cn 2 CDcJ2 = constant

permit the steady-state solutions to be expressed in terms of new variables.

The above equation for p assumes a constant surface speed ratio, pd/2V

for the Magnus spins, and is consistent with the use of an aerodynamic

roll vane system for generation of the roll rate. The yaw damping relation-

ship is derived in Appendix I. Substituting the above relationships into

equations (1), (2), (3), and (5), results in the following new expressions

for the steady-state variables:
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'l 1 g ? "rB
r~ CM 'ff12 cossso 2 pa 3 CDC3 d IPA

8 d~d

8 'B ( 6 d A xc. p.- PT CDc 3 IT)
si s r 3 PA 2dK 2

sin9 -=

CMp 7T/ 2 1

2zJ ~•/ ~ Fk " ig O
CM _Lý3 [ZCD d B M r~2 1 CM, 2 d DC K PA M

CMp /2 1

(Magnus Autorotation)

r CM /B

Gd

8 J 2 CDC 3 ~.p
tan eS - 2 to A IZd Bk

as 3 CM zo 2 K 2
KJ2

(Non-Magnus Autorotation)
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It can be seen from the above equations that the autorotation

characteristics are determined by the body length, diameter, radii of

gyration, the relative density of the body with respect to air density, and

the distance from the body center of gravity to the body center of pressure,

as well as by the aerodynamic derivatives.

Unfortunately, a single set of similarity parameters cannot be

established for both the steady-state yaw spin rate and the autorotation

attitude, 8. However, the similarity parameters for either r or 8

alone are obvious, except for the case of the equation for sin 6 (Magnus

autorotation), where the numerator consists of two terms. In this case

the dependence of the autorotation attitude on ( PB/ pA), ( I/d), d, etc.

is different for each term, and no singular dependence can be established

with the geometric, inertial, and atmospheric parameters.

It is interesting to note that increasing air density will in general

result in reduced yaw spin rate and increased autorotation attitude. Con-

sequently, in designing an autorotative recovery system, the maximum

autorotation attitude can be selected for impact conditions and at altitude

the autorotation attitude will be smaller.

To illustrate the effect of body size on the autorotation attitude,

calculations have been made for two geometrically similar but different

size bodies with the same aerodynamic characteristics. The relative

density of the two bodies, of course, must be different since larger bodies

tend to have a lower relative density. The larger body is assumed to be

the large booster, Table II, and the small body is identical except that

d = 0.5ft

p B = 0. 158 slugs/ft
3

I = . 096 slug-ft
2
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The steady-state autorotation attitudes for both bodies are presented in

Table III, based on both a Magnus spin propelling moment, and the use of

a flap for generation of a spin propelling moment. In this comparison, the

Magnus moment and the moment due to the flap have been made identical

at 90 degrees angle of attack. For both of these examples, the center of

gravity has been assumed to be 1. aZ diameters from one end of the cylinder.

We see from the results that the larger body tends to autorotate with a more

nose-up attitude for both types of autorotations, and also that in this case,

the non-Magnus autorotations are considerably flatter.

B. STABILITY OF AUTOROTATIVE MOTIONS

The linear autorotative motion theory permits a classical evaluation

of the static and dynamic stability of near steady-state large angle of attack

spinning motions. The stability theory and the stability equations are pre-

sented in Appendix I.

In general, there is little indication of possible instability in fully

developed flat spins, although configurations of interest should be investi-

gated for various flight conditions.

The stability requirements for non-Magnus slowly rolling autorotative

spins are the least stringent. Sufficient conditions for both static and dynamic

stability, if the steady-state spin attitude, 8 , is small, are that Cnr - 0,

CMq - 0, and I x/I 1. These requirements will be met for nearly all

configurations of interest.

For Magnus-type autorotations with CM VI 2 zero, the static stability

criteria imply that the Magnus moment coefficient satisfy the inequality

CMp 7 /2  > ICnr [I- KLZ CMpr] (6)

33



in addition to the requirement as above that Cnr -C 0. It is interesting

that the CMp7 / 2 requirement is equivalent to sin $ S 1; therefore,
for flat autorotative spins the requirement that Cnr 4C 0 is sufficient.

For CM 7 1 2 not equal to zero, the stability must be evaluated numeri-

cally.

The dynamic stability of the Magnus-type autorotations, as

evaluated by the Routh criterion, is not insured by either 9 being small

or Cnr and CMq being negative. However, all configurations investi-

gated in the present program have been found to be dynamically stable

at the steady-state values of autorotation attitude and yaw rate.

Additional insight into the system stability can be achieved by

direct approximation of the roots of the characteristic equation, assuming

9s' K L, and I /I to be small and r s large. The analysis is shown inSB' x
Appendix I. The roots of the characteristic third-degree polynomial were

found to be, approximately

I = KL Cnr (7)

and

K L CMq

2 , 3 = 2 + ir (8)

Thus, by this analysis Cnr C 0 and CM q 0 are sufficient conditions

for stability.

Comparison of the Approximate Motion Theory with Six-Degrees-of-

Freedom Motion Histories. The accuracy of the approximate motion theory

has been investigated by comparison of the steady-state solutions as given

by equations (1) and (2) with exact six-degrees-of-freedom motion histories.
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For these comparisons a cone-cylinder body configuration was utilized.

Table I contains the physical characteristics of the body as well as the

aerodynamic derivatives for the six-degrees-of-freedom motion calculations

and the coefficients CM 7 / 2 , CM p/2' and Cnr, which are used in the

steady-state solutions.

Both the sub-critical and critical Reynolds number flight conditions

were evaluated such that the effect of both positive and negative Magnus

forces could be determined. The variations of CM and CMp with angle

of attack were assumed to be directly proportional to sina for the six-

degrees-of -freedom trajectories to agree with the assumptions of the

approximate motion theory (see Appendix I for a discussion of the aero-

dynamic considerations in the approximate theory). The power series

expansions used in the six-degrees-of-freedom calculations provide a

very good fit to sin a in the vicinity of a = 7/2, as can be seen from

Figure 14. Thus the principal effects to be observed in the comparison

are

1) the effect of neglecting second-order

terms in the approximate equations

Z) the effect of neglecting the translational

degrees of freedom

The initial conditions used for this comparison (corresponding to

equilibrium descent) are summarized in Table IV. Except for case 2,

which was initiated at zero yaw spin rate to observe the effect of yaw rate

build-up, all runs were initiated at the approximate calculated steady-state

autorotation conditions.

Time histories of 8 and r from the six-degrees-of-freedom

computer runs are illustrated in Figure 15, along with the computed
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steady-state values of 8 anld r. The agreement of the average six-

degrees-of-freedom motion amplitudes with the calculated steady-state

solutions is ver-y good, and in most all instances the difference is less

than one per cent.

A second comparison can be made between the actual frequency

and damping of the six-degrees-of-freedom motion histories and the roots

of the characteristic equation describing the linear system. Both the

approximate roots of the characteristic equation as given by equations (7)

and (8), and the exact roots, as evaluated numerically, have been determined.

These results are presented in Table V. From this comparison it is evident

that the approximate roots agree quite closely with the exact roots, thus

subst,.ntiating the assumptions made in the analysis.

The damping exponents shown in Table V were calculated from the

six-degrees-of-freedom time histories. Since the essentially non-oscillatory

yaw rate represents the real root, the root X1 was determined from an

exponential approximation of the yaw rate time history. Likewise, the decay

of the 6 oscillations was used to calculate the real part of X 2,3" The

frequency data presented in the last column of Table IV represent the

frequency of the 6 oscillations.

For case 3, it is particularly noteworthy that the 8 damping, as

determined from the motion histories at r/rsteady-state 9 0. 6, is much

greater than at near steady-state, whereas only a small difference exists in

the exponent for the yaw rate. This shows that the variation in yaw rate has

an effect on the 8 oscillations, which is equivalent to an increased damping.

An analogy can be made between the effect of a slowly changing yaw rate on

autorotation attitude and the heteroparametric damping of re-entry angle

of attack o,cil]ations resulting from an increase in the air density with time.
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VI. TRAJECTORY AND MOTION STUDIES

The purpose of this section is twofold: first, to present the results

of investigations of the body transient spin dynamics during autorotation

development, which was accomplished by numerical integration of the

complete equations of motion, and second, to show, quantitatively, the

autorotative motions of the two body configurations for the several flight

regimes of interest. The second objective has been accomplished by

numerical integration of the complete equations of motion, and also by

numerical computations based on the linear solutions for the steady-state

motion.

A. TRANSIENT SPlNNiNG MOTION OF THE FINENESS-RATIO-EIGHT

CONE-CYLINDER BODY

Perhaps the most important. aspect of an autorotative motion is its

nmtil.tion. Because in the present study we are dealing with bodies which

have uns?;able aerodynamic pitching moments at least from 0 to 90 degrees

angle clf af.taclk, we have a natural mechanism for initiating a large angle of

attack motion. The roll rates which are considered are sufficient to

generate a Magnus force, but insufficient to provide gyroscopic stability

at small angle of :tf:ack.

One of tte important deficiencies of the linear theory is its inability

to predict accurately the stability of spinning motions at yaw rates much

less than the steady-state yaw rates. If we examine the pitching moments
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for a spinning body in vertical descent, as illustrated in Figure 16, we see

that the gyroscopic pitching moment, I 42 cos 8 sin 8 , which balances

the unstable aerodynamic pitching moment, M y, will be greatly reduced

for small spin rates. As a result, we find that the pitching oscillations

are quite large at small yaw spin rates. When the angle of attack departs

greatly from 90 degrees during these oscillations, the body also experiences

a reduction in the spin propelling moment. Thus in the small yaw-spin rate

regime, there is a very complex balance of moments. To determine if the

motion will progress toward the steady-state solution under these conditions,

we must solve the equations of motion in their exact, non-linear form.

To investigate this problem, six-degrees-of-freedom motion histories

have been computed for the cone-cylinder body in vertical descent, assuming

various initial values of the ratio r in.rial / rsteady-state' In general, the

initial attitude, 6 , was taken to be small, such that the model motion begins

in an approximately horizontal plane. Various roll rates are also considered.

Alrhough. the roll rate has only a very small effect on the steady-state solution,

as given by the linear theory, the effect of roll rate on the transient spin

c:h;i r• --eristics was unknown.

Typical transient m,3icn histories fbr various initial yaw rates are

preser.*eJ -n Figure 17. A supercritic l Reynolds number flight condition

(R = 5 Y 10 5,, corresponding -o a descent velocity of 229 ft/sec at 15, 200

feet, his been used such that trie results will be applicable to other full-

szale configurations. The aerodynamic data for this Reynolds number are

preser.ted in Table I as case 4. Examination of the motion histories in

Figure 17 shows that the initial pitching oscillations increase with decreasing

initial yaw rate. Although the pitch amplitude becomes larger with decreasing

yaw rate, the initial damping of the 8 oscillations increases with decreasing

yaw rate.
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One means of correlating these data is to establish a relationship

between the maximum value of 8 during the first pitch oscillation and the

initial value of the yaw rate.

A correlation of the maximum amplitude during the first pitch cycle

with the initial yaw rate is shown in Figure 18. The correlated data are

presented for three values of the roll rate. It will be observed that for

constant values of the ratio r initial/ r steady-state value of max

will be nearly independent of the roll rate. For example, at initial yaw rates

of about . 1 rsteady-state' the maximum amplitude varies only from about

33 to 41 degrees; and at values of ro / rsteady-state = . 5, the variation in

8 is only from 5 to 7 degrees. This investigation shows that for initialmax
yaw rates greater than about . 1 rsteady-state' we can develop the Magnus-

type autorotation for surface speed ratios as low as . 025.

B. STEADY-STATE AUTIOROTAT1ON CHARACTERISTICS OF LARGE

BOOSTER CONFIGURATIONS AT SEA LEVEL

For recovery of a large booster, it Is conceivable that either a

Mignus-type autor3ta&ion or -r, autorot-:ion by the use of aerodynamic

strikes or flaps could be employed for terminal deceleration and recovery.

7rhe purpose here is to show the salient differences between rapidly rolling

'Magnus: and slowly rolling (propeli.ng moment by use of flaps) spins for

equilibrium vertical descent at sea level. The effects of center-of-gravity

location on both types of autorotation will also be discussed. All of the

comparisons have been made on the basis of the same descent velocity,

228 ft/sec.

Figure 19 shows the steady-state autorotation attitude as a function of

the steady-state yaw rate, r, for the basic center-of-gravity position. The
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data were computed using equat-ons 1'l through (4). The various yaw

rates were obtained by making the iuaorotative moment a parameter.

For the Magnus spins, the parameter was the roll rate, and for the non-

Magnus autorotations the parameter was the flap length, I F The

variations of p and IF with_ r are also illustrated in Figure 19.

At constant yaw rate *.he ncn -Magnus autorotations are seen to be

flatter, and the difference becomeF gre.ater as the yaw rate increases.

This latter effect is a result of the Magnus autorotation attitude increasing

at large yaw rate due to the unfavcrable, effect of the derivative, CMpr.

Effect of Center of Gravity. The previous comparison between

Magnus and non-Magnus aul.rota* ons was for the basic center-of-gravity

pos*tion, which is 1. 22 diame*ýer& !rcm the base. It is also worthwhile to

examine the effect of the c~en'er -c!,-gravilv lczation along the axis of

symmetry. The analysi reqli res ,hat* 'he aerodynamic yaw damping

derivative, Cnr, be re-evaluated for eazh cerner of gravity as well as

the. aerodynamic overfurning and Magnus moments. Again using equations

,']' through (4'k, we can plo* ."I e -teady -- ,-e yaw rate, r , and the steady-

-tte autorotat ion att:tude, 8 ver-,u' en'er-of-gravity location. The

results are presented in Figktr. 20.

"This cal,-.ulation reveal-, a verv interes':ing fact about the Magnus-

type autorotations, whiPJ- ;= haa -he minimum autorotation attitude and

maximum yaw r.3te are obtar.,ed a, a cenfr-'f -grav:ty position about 0. 3

body lengths from the erd of the cylnder. Ths is very close to the basic

venter-of-gravity location for the ]arge booster configuration.

For large aerodynamic. drag, we can conclude that the slowly rolling,

non-Magnus autorotations will be more suitable when the body center of

gravity is near the geomet;ri: center of the body, and the Magnus autorotations

will be more suitable when the center of gravity is near the ends of the body.
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C. TRANSIENT MOTION CHARACTERISTICS OF THE LARGE BOOSTER

CONFIGURATION (LOW ALTITUDE)

In the previous paragraph, it was shown that for steady vertical

descent, autorotation attitudes less than about 30 degrees from hori-

zontal are possible for the large booster configuration with either Magnus

or flap-generated autorotative moments. It is also necessary to examine

the detailed dynamics during autorotation initiation, using the exact six-

degrees-of -freedom equations of motion. For this analysis an initial

altitude of 20, 000 feet and an equilibrium vertical descent velocity of

313 ft/sec, corresponding to an angle of attack of ninety degrees, was

selected. The first problem was to determine the initial stability of the

motion, that is, the conditions under which the motion would progress

towards the steady-state solution. Tl'e second problem was to examine

the descent trajectory and motion over a longer period of time to ascertain

if the actual motion, as calculated by the six-degrees-of-freedom equations

of motion, approaches the steady-st-.,te autorotation attitude and yaw rate

as given by the simplified equ.-.tions of motion.

Some of the conditions investigated, the results of which will be

described in this report, are 'nd*-•led in Table VI. In all cases, the

body had an initial aerodynamic instability in pitch, i. e. , a positive pitching

moment coefficient.

For investigation of the initial stability of an autorotative motion,

the variations in the linear veloc:ty component are not of great consequence;

consequently, for preliminary analysis attention was restricted to the

angular motions of the body. Plots of the Euler angles 8 and * versus time,

for the conditions in Table VI, are shown in Figures Zl through 26. The

spin rate, q , can be closely approximated from the * time histories by

inspection. Sin,'e preliminary .. ai-culations indicated that stable autorotations

41



could be developed for quite small initial yaw rates, the time histories

illustrated are for an initial yaw rate of zero.

For the 90-degree initial angle of attack conditions, the motion

resulting from a Magnus autorotative moment becomes unstable in a for

the smallest surface speed ratio, pd/2V = 0. 1. The instability appears

to correspond to a real root, since the oscillatory motion is well damped.

The spin rate, f , approaches - p as 8 increases to near -w/Z, in

accordance with conservation of the roll angular momentum.

For roll surface speed ratios of 0. 2 and 0, 3, Figures 22 and 23,

the motions with Magnus autorotative moments are both statically and

dynamically stable, and 8 is seen to be approaching the steady-state

solution as given by equation (2).

The non-Magnus autorotation initiated at a = 90 degrees and r = 0
0

is also stable, and both the 8 and * motions rapidly approach the steady-

state conditions. The apparent 8 damping in the case of the non-Magnus

autorotation, however, is less than in the Magnus-type autorotation, even

though the damping derivatives Cnr and CMq are identical in both cases.

This can be explained by the coupling which exists between the rolling

motion and the pitch and yaw rates in the Magnus autorotations. Although

the gyroscopic pitching moment resulting from the coupling has about a

90-degree phase angle with respect to the pitch rate, the effective

damping is still very great.

Another characteristic difference between the transient motion of

Magnus-type autorotations, (where the Magnus force is positive), and the

very slowly rolling non-Magnus autorotations, is that the initial direction

of yaw rotation of the Magnus autorotation is always reversed from the

steady-state direction when the spin is initiated at small or zero yaw rate.

This can also be explained by the gyroscopic moments. As the body begins

to pitch nose-up, due to the positive aerodynamic overturning moment, the

positive q and the positive p result in a positive r and 4. This gyroscopic
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effect overpowers the Magnus moment, which is in the opposite direction.

When the body nose begins to pitch down, the gyroscopic moment and the

Magnus moment are in the same direction, and from this point on the

autorotation develops rapidly in the direction of the Magnus moment.

For example, in Figure 22, we see the nose of the body moving to a

positive * of 140 degrees before the yawing motion starts in the

opposite or steady-state direction.

The transient motion of the large booster starting from an initial

angle of attack of 5 degrees is shown in Figures 25 and 26. The initial

body attitude is illustrated in the sketch below.

ir \

''

8o - 85°

- o 50

z

43



This case is somewhat more critical, since when the nose rises to 8 = 0,

there will exist a positive 6 in addition to the aerodynamic overturning

moment. This type of initiation would occur if the booster had originally

been aerodynamically stable (for example, by use of stabilizing fins) and

then the stabilizing fins were suddenly removed.

For autorotation initiation at a = 5 degrees, the amplitudes of the

pitch oscillations are substantially increased for both the Magnus and

non-Magnus spins. However, for both types of autorotative moment

the motion is found to be stable for the magnitudes of the autorotative

moments investigated. A word of caution is necessary in regard to

interpretation of the results for the non-Magnus autorotation. Since

the fixed-plane autorotative moment, CMzo, is assumed to be constant

(a limitation which is imposed by the present six-degrees-of-freedom

equations of motion), it does not represent a realistic flap system at

angles of attack which are near a = 0, T . Consequently, the pitch

oscillations would tend to be greater for an actual flap system. In

contrast, the Magnus autorotations are conservative, since the Magnus

autorotative moment drops to zero at a = 0, Ir , and at intermediate angles

of attack the Magnus moment as used in the computer solutions is less than

the experimental data.

Vertical Descent Trajectory and Motion at Low Altitude. The

transient motion of the large booster for periods of long duration (from

20, 000 feet altitude to near sea level) is illustrated in Figures 27 and 28.

These figures show not only the pitching and yawing motion, but also the

altitude and velocity variation with time for vertical descent. Both of the
cases shown are Magnus-type autorotations and they differ in the magnitude

of the initial yaw rate; the one trajectory having an initial yaw rate approxi-

mately equal to the calculated steady-state yaw rate, and the other having an

initial yaw rate of only about 10 per cent of the calculated steady-state yaw rate.
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Using the six-degrees-of-freedom values for velocity and altitude,

the steady-state values of spin attitude, e , and yaw rate, r, were computed

from equations (1) and (2). These approximate solutions are shown in

Figures 27 and 28 for comparison.

For the case of the initial yaw rate, r , approximately equal to the0

steady-state yaw rate, Figure 27, we see that the actual variation of yaw

rate with time closely follows the calculated steady-state solution, but that

the actual yaw rate is slightly greater in magnitude. The actual spin

attitude, e , is over-predicted by the steady-state approximation. This is

due in part to the very slow response of the 8 motion to the changes in

velocity and air density. For example, the exact solution approaches the

steady-state solution after a time lapse of about 70 seconds. The variation

of descent velocity with altitude, for this case, closely follows a predicted

curve for I = 90 degrees. The actual descent velocity is greater by about

10 - 15 ft/sec at all attitudes, because of the reduced drag associated with

the actual spin attitude.

For the second case, where the initial yaw rate, r , is small, we0

observe overshoots in both the yaw rate and spin attitude with respect to

the calculated steady-state values. The spin attitude, 8 , following the

overshoot, decreases to a level less than the steady-state approximation,

as in the case for r large.0

We conclude from these examples that for near equilibrium vertical

descent at subsonic velocity, the linear theory provides a conservative

prediction of the actual spin attitude, i. e. , actual spins will tend to be

flatter than estimated from the steady-state equations.
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D. RE-ENTRY STUDIES FOR LARGE BOOSTER CON!-iGURATION

A booster or other vehicle re-entering the earth's atmosphere can

experience several types of re-entry motion, depending upon the initial

attitude and angular rates of the body. The re-entry attitude and angular

rates for uncontrolled vehicles can have a large variation because at very

high altitude, the aerodynamic damping is small and disturbances created

earlier in the flight history, such as at separation, continue to influence

the motion until re-entry. The purpose of this portion of the investigation

was to compare the several types of re-entry motion and to determine, in

particular, the relative effectiveness of an autorotative-type re-entry motion

for mitigating the re-entry environment.

For this study, the following typical re-entry conditions were

assumed for the large booster configuration:

initial velocity, V 6910 ft/sec

initial altitude 191, 000 ft

initial flight path angle, y 30 degrees below horizontal

In addition, a vertical re-entry case was considered, wherein the

initial velocity was selected such that the maximum deceleration would be,

theoretically, identical to the 30-degree re-entry angle case. The require-

ment is stated by the relationship

_ )
dV CC V2 sin"
g max
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Thus for the vertical re-entry case we used

flight path angle, y vertical

initial altitude 191, 000 ft

initial velocity, V 4875 ft/sec

Re-Entry Motions. Attention in this part of the study was devoted

primarily to re-entries at large initial angle of attack, and to cases where

yawing moments and yawing angular velocity exist to sustain a large angle

of attack motion. Other modes of re-entry were also considered for

comparison with the sustained large angle of attack motions.

If the typical large booster (Table II) re-enters in a tail-first

attitude, it will stay at an angle of attack of 7 radians, because this is

a stable trim angle for the basic center of gravity, Because at this

angle of attack the booster drag is minimum, the a = T re-entry

trajectory will result in the largest values of the maximum dynamic

pressure, p /2 V , and the stagnation heating rate parameter p1/2 V3

If the booster re-enters at an angle of attack of 90 degrees and

without roll spin or yaw rate, a tumbling motion will begin, due to the

aerodynamic overturning moment. The tumbling motion will persist

until an oscillation peak is attained. The body will then oscillate with

decreasing amplitude, due to both the aerodynamic damping and hetero-

parametric damping associated with increasing dynamic pressure. The

motion will eventually damp to the stable trim point at 180 degrees angle

of attack. If the booster also has a small axial spin, then the oscillations

will be smaller in amplitude, but the booster will still turn around and

eventually reach the 180-degrees-angle-of -attack condition. Since these

tumbling re-entries, as well as the tail-first re-entry, are possible for
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passive type re-entry, the motion and trajectories have been computed

for comparison with autorotative-type motions, using the non-linear

body-fixed six-degrees-of-freedom equations of motion.

For the development of the autorotative-type motions at supersonic

velocity, it was assumed that specific values of the fixed-plane moment

coefficient, CMzo, would be attainable from a flap configuration as

described in Section II. However, the use of the moment coefficient,

CMzo, for re-entry angles other than vertical does not permit an exact

simulation of either a body-fixed moment, or a moment about the velocity

vector. To be precise, the moment about the velocity vector for a- = 90

degrees varies between CM., and CMz° sin a . The same variation

also occurs when a constant yaw rate about the velocity vector is trans-

formed into the fixed-plane axes system. The primary effect of this

error is to reduce the effective spin propelling moment, so that from a

practical point of view, the expediency is justified from a conservative

point of view. To eliminate this method of expressing the aerodynamic

spin propelling moment would have required a transformation of

coordinates or other program modifications which were beyond the

computer capabilities.

For vertical descent, CM actually represents a body-fixed

moment if we satisfy the relationship p = - v sin 8 . Results for this

case will also be, shown in a subsequent paragraph.

Re-Entry at 7 - 30 Degrees. A large number of autorotative

re-entry trajectories were computed for the 30-degree re-entry angle

case to determine appropriate values for the initial yaw spin rate and

the moment coefficient, CMzo, and also to ascertain the effect of the

overturning moment coefficient, CM 1 / 2 . Because the time duration
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of these preliminary trajectories was restricted to about 20 seconds due

to build-up of integration error (see Section IV), most of the trajectories

covered only the initial phase of re-entry. However, two typical autorotative

re-entry trajectories were re-initialized and extended to low supersonic

and transonic velocities. These data are presented in Figures 29 and 30.

Figure 29 illustrates the variations of angle of attack, yaw rate,

velocity, and altitude with time for an autorotative re-entry starting from

an initial re-entry angle of attack of 90 degrees. In addition, data for the

corresponding tumbling re-entry (r° = 0 and no autorotative moment) are

plotted. For both trajectories in Figure 29, the booster aerodynamic

center of pressure has been moved aft such that the overturning moment

is smaller than the basic value. The initial yaw spin rate is 1 rad/sec,

and the autorotative moment coefficient, CMzo , is 0. 2. The complete

aerodynamic characteristics are presented in Table II. At t = 50 seconds,

the trajectory was re-initialized and the aerodynamic characteristics

were adjusted for the ensuing transonic flight conditions.

For comparison, calculated steady-state values of yaw spin rate,

r, and angle of attack, based on both the supersonic and transonic values

of the stability derivatives, are plotted. In this case, the steady-state

angle of attack, C , is obtained by adding 7r/2 to 9 , as given by equation

(4). The steady-state solutions are also based on the six-degrees-of-

freedom values for velocity and altitude.

An important characteristic of the steady-state yaw rate, as

derived from the linear equations for non-Magnus spins, is that the yaw

rate is directly proportional to velocity if all the aerodynamic derivatives

are constant. This explains the large values of steady-state yaw rate

during the initial period of re-entry where the velocity is large. The

actual yaw rate as computed from the exact equations of motion does not
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approach the steady-state yaw rate until the booster has decelerated to a

low supersonic velocity, because the initial yaw rate in this case is small.

For example, at the beginning of re-entry, the initial yaw rate is 1 rad/sec,

whereas the theoretical steady-state yaw rate is about 3.4 rad/sec. There-

fore, in the initial period the body has a positive angular acceleration in

yaw, and the yaw rate increases slightly with time.

In the transonic and subsonic velocity range, the aerodynamic

autorotative moment, CMzo, increases and the yaw damping derivative,

Cnr, decreases such that the steady-state yaw rate is much greater than

at the low supersonic velocities. The computed yaw rate approaches the

new subsonic steady-state curve after a period of about 50 seconds from

the time at which the booster decelerates through Mach number 1. 0.

The calculated angle of attack history in Figure 29 also approaches

the steady-state solution as given by the linear theory at low supersonic

and subsonic velocities. It will be observed that the autorotative motion

is quite effective in keeping the angle of attack near 90 degrees. The

maximum angle of attack for this autorotative re-entry is about 120 degrees,

or 30 degrees nose-up with respect to a plane normal to the trajectory.

Comparison of the pitching motion of the autorotating booster with

the tumbling booster, which has no yawing motion, shows that at every

instant the angle of attack is closer to 90 degrees with the autorotative

motion. There is also a noteworthy difference in the angle of attack

envelopes. It will be noted that the finite yaw rate at re-entry greatly

reduces the initially large pitching oscillation which characterizes the

tumbling re-entry. Instead, the maximum envelope in angle of attack

for this type of autorotative re-entry occurs near the point of maximum

dynamic pressure. In the transonic velocity range, the angle of attack

envelope is very similar to that which has previously been described

for vertical descent near sea level, (Figure 27).
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The autorotative re-entry motion of the large booster has also been

computed through the supersonic range for the large overturning moment

case (basic center of pressure data in Table II). Motion history and

trajectory data are presented in Figure 30 for both the autorotative re-entry

and the corresponding tumbling re-entry. It was thought that a larger

initial yaw spin rate and autorotative moment would be required for the

autorotative re-entry in this case. However, for an autorotative moment

coefficient, CMzo, of 0. 4, the minimum yaw spin rate investigated, 2 rad/sec,

was found to be sufficient for achieving an autorotation at an angle of attack

near 90 degrees. For this large overturning moment case, it can be seen

that a much greater difference exists between the autorotative pitching

motion and the tumbling motion. In addition, the yaw rate reduces the

maximum width of the angle of attack envelope, and the greatest angle of

attack oscillation is only about 18 degrees. In this example, the fixed-

plane yaw rate, r, becomes very irregular as the motion progresses. This

is due, primarily, to the motion of the fixed-plane coordinate system, and

is not representative of the motion as it would be observed in a fixed coord-

inate system oriented with respect to the flight path. The irregularity in

yaw rate becomes more severe when the spinning motion departs from a

single plane, that is, when the angle of attack becomes other than 90 degrees.

To further determine the nature of the irregular motion resulting
from use of the fixed-plane yawing moment coefficient, CMZ0, for traject-

ories other than vertical, some additional trajectories were attempted with

the body-fixed equations of motion, using a body-fixed yawing moment

coefficient. Since there was no way of satisfying the relationship p = - i sin 8

continuously, the best which could be done was to estimate an average value

for the roll spin rate. Using this technique, it was found that a true autoro-

tative motion could be simulated for about 30 seconds, after which time a

rapid divergence would take place due to improper roll orientation of the
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spin propelling moment. For the initial period, angle of attack and yaw

rate variations very similar to those shown in Figures 29 and 30 for

fixed-plane autorotative moments were obtained. Consequently, it was

concluded that the variations in fixed-plane yaw rate shown in Figures 29

and 30 are in actuality merely the result of the transformation of the true

motion into the fixed-plane coordinates.

Vertical Re-Entry. The autorotative motion of the large booster

during vertical re-entry was computed for better visualization of the

characteristic pitching and yawing motions. For vertical re-entry, both

the fixed-plane variables and Euler angles permit a direct physical inter-

pretation of the motion. The initial conditions assumed for the vertical

re-entry trajectories have been previously described.

Trajectory data for the large booster with the basic aerodynamic

center of pressure (large overturning moment) are presented in Figures

31 and 32. Figure 31 illustrates the re-entry motion for an initial yaw

rate of 2 rad/sec, which is identical to the yaw rate used for the com-

parable re-entry at )' = 30 degrees.

In great contrast to the previously described motion histories for

a re-entry angle of 30 degrees, the yawing and pitching motions for

vertical re-entry, as described by the fixed-plane yaw rate, r, and the

Euler attitude angle, 8 , are smooth, and the long period effects are

clearly seen. As would be expected, close inspection shows a great deal

of similarity between the vertical and 'y= 30 degrees re-entry motions,

if the short period motions are averaged out.

In Figure 32, the re-entry motion is illustrated for zero initial

yaw spin. This result is quite significant, since it clearly shows that the

initial yaw spin rate is not a definite requirement for autorotation development
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during re-entry. However, the angle of attack is not as close to 90 degrees

in this case, and large angle of attack oscillations occur at the beginning of

re-entry, similar to those computed for tumbling re-entry.

The steady-state yaw spin rate and spin attitude are also shown for

comparison in Figure 32. Shortly after the time of maximum deceleration,

it will be noted that the yaw rate in the exact solution exceeds the steady-

state yaw rate. This is in contrast to the results for re-entry at = 30

degrees, Figure 29, where the calculated yaw rate was always less than

the steady-state yaw rate.

The exact solution for spin attitude, 8 , is also less than the steady-

state values of 9 after the time of maximum deceleration. The difference

between the steady-state 6 and the calculated 8 in the low velocity range,

near 1000 ft/sec, is due primarily to the difference in the yaw rate. It

will be recalled that the steady-state solutions for 9 are approximately

inversely proportional to the yaw rate squared.

Comparison of Re-Entry Environments. From re-entry to subsonic

terminal descent, the primary benefit to be derived from the large angle of
2attack motions is a reduction in the free-stream dynamic pressure p/Z V

1/2 3and the stagnation heating rate parameter, p V . No significant

reduction in the maximum re-entry deceleration is possible, because, as

Allen and Eggers have shown in their linear theory (Reference 21), the

maximum deceleration is dependent only upon the properties of the atmos-

phere, the initial re-entry velocity, and the re-entry flight path angle.

Before discussing the dynamic pressure and aerodynamic heating

results, it is interesting to observe the variation of velocity with altitude

for the several types of re-entry motions which have previously been

discussed. Figure 33 depicts these velocity profiles for the large booster

configuration and the initial conditions corresponding to the 30-degree

53



re-entry angle. At a specific altitude, the profile with the largest velocity

is the one corresponding to the stable tail-first re-entry, as would be

expected. The profiles in the intermediate velocity range are associated

with tumbling re-entry. The lowest velocities are those corresponding to

the autorotative re-entry motions. For all altitudes below about 70, 000

feet, the autorotative re-entry velocity is less than one-half the velocity

corresponding to tail-first re-entry.

The maximum dynamic pressure for steep re-entries occurs at

very nearly the point of maxmum deceleration. Figure 24 shows the

dynamic pressure profile from several of the computed trajectories in

the region of the maximum dynamic pressure. For the tail-first re-entry,

the maximum dynamic pressure is 1225 lb/ft2 at an altitude of 65, 000 feet.

The tumbling re-entries experience a maximum dynamic pressure which is

about 75 per cent of the tail-first re-entry, and the peak is at a higher

altitude. The maximum dynamic pressure for autorotative re-entry is

as small as 460 lb/ft2 at an altitude of 90, 000 feet, or only about 38 per

cent of the maximum dynamic pressure for a tail-first re-entry.

The stagnation heating rate of a rounded body is very nearly pro-
1/2 3

portional to p V . This parameter, calculated for p and V with

units of lb-sec /ft4 and ft/sec, respectively, is plotted in Figure 35 for

several of the re-entry trajectories which were initiated at the 30-degree

re-entry angle conditions. For tail-first re-entry, the parameter has a

8
maximum value of 14. 0 x 10 , whereas for autorotative re-entry, a value

of only 8. 9 x 108 is indicated. Thus, a significant reduction in both the

maximum stagnation heating rate and the total heat input is achieved with

the large angle of attack re-entry.

The reader must be cautioned that the results which have just been

discussed are applicable only to the particular booster which has been

investigated. For example, the ratio of CDS at 90 degrees angle of
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attack to the C DS at 180 degrees angle of attack is 6. 2 for the large

booster considered here. For other configurations, drag ratios, and

re-entry conditions, different results could be expected. The objective

here is only to present a typical example, and to show quantitatively the

influence of large angle of attack motions on the descent trajectory and

the vehicle environment.
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VII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

1. The near steady-state autorotative motion of either rapidly or

slowly rolling quasi-axi-symmetric bodies can be accurately predicted by

the linear theory developed from the two-moment equations of motion in a

fixed-plane coordinate system, provided that the aerodynamic moments at

large angle of attack are correctly described. Linear solutions for 8 and

r have been found to agree within about one percent with exact motion

histories computed by numerical integration of the six-degrees-of-freedom

equations of motion, and the frequency and damping of the computed motion

histories are in close agreement with the approximate roots of the charact-

eristic equation of the linear system.

2. Autorotations which are sustained by the aerodynamic Magnus

moment will be limited to subsonic descent velocities, because the aero-

dynamic Magnus force at transonic and supersonic Mach numbers is

insufficient to satisfy the static stability requ.rements for a stable auto-

rotation.

At subsonic velocities the roll surface speed ratio, pd/2V, required

for a Magnus -type autorotation at near 90 degrees angle of attack, was

found to be less than about 0. 3 for all cases examined. Since roll surface

speed ratios in excess of 0. 3 have been achieved with aerodynamic rotor

systems, it: will be possible to develop Magnus -type autorotations by

aerodynamic means alone.
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3. Autorotations can be achieved by the use of a body-fixed flap

located approximately 90 degrees from the stagnation line, if the body

rolls such that the same side of the body is always directed toward the

airstream. The characteristics of this type autorotation can be approxi-

mated by introduction of a fixed-plane moment coefficient, CMzo, into

the linearized or six-degrees-of-freedom equations of motion. This

concept can be applied to both supersonic and subsonic flight velocities

because the yawing moment due to a flap can be appreciable, even at

supersonic Mach numbers. The use of flap-type appendages for producing

an autorotative moment has an additional advantage in that the cross drag

coefficient can be greatly increased at the supercritical Reynolds numbers

encountered at terminal descent velocities.

4. The aerodynamic moment derivatives due to rolling and yawing

motions are extremely significant in determining the steady-state auto-

rotation rate and attitude, as well as the stability of the motion at angles

of attack near 90 degrees. Strip theory can be used to evaluate the two

most important derivatives, Cnr and CM pr. These derivatives are non-

linear, both with respect to the angle of attack, and the magnitude of the

yaw rate.

5. It is possible to develop large angle of attack autorotative

motions even though the initial yaw rate and the autorotative moment are

small and the overturning moment in the pitch plane is large. This para-

doxial phenomena can be explained by the fact that only a small yawing

moment is required to obtain a large I, which in turn provides a large

inertial pitching moment, I 42 cos 8 sin 8 , which opposes the aero-

dynamic overturning moment.
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It is possible to initiate autorotative motions at small angle of

attack if the body has an unstable aerodynamic pitching moment which will

rotate the body to large angle of attack. For rolling bodies (Magnus-type

autorotations), the transient motion from small angle of attack is very

complex, since it is possible for both the gyroscopic moment and Magnus

moment to be either positive or negative.

6. The autorotative recovery of a large booster configuration is

shown to be feasible. It is possible to initiate an autorotative yawing

motion at re-entry if the initial angle of attack is near 90 degrees. In

most instances no initial yaw spin rate will be required if the autorotative

moment coefficient is at least one-tenth of the overturning moment coefficient.

Both the maximum dynamic pressure and maximum stagnation heating rate

are significantly reduced by a large angle of attack re-entry. The terminal

descent velocity of the large booster configuration examined was sufficiently

small that the residual energy could be absorbed efficiently for a body weight

penalty of only about 5 percent of the vehicle basic weight.

B. RECOMMENDATIONS

1. The transient autorotative motion of aerodynamically unstable

bodies with flap and roll vanes should be investigated further, because

these configurations more nearly represent practicable recovery systems.

These investigations will require expansion of the six-degrees-of-freedom

equations of motion to include the aerodynamic stability derivatives in roll,

yaw, and pitch, which result from the addition of appendages.
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2. The present six-degrees -of -freedom trajectory program should

be re-programmed for a computer with larger data storage capacity. This

will allow the addition of new stability derivatives and will permit the

inclusion of a quaternion normalization scheme, such that long duration

trajectories and motion histories can be calculated more efficiently.

3. Subsonic wind tunnel tests at large Reynolds numbers should

be made to evaluate the drag, yawing moment, and Magnus moment of

finite length cylinders with flaps and rotors. Dynamic tests should be

conducted with quasi -cylindrical -shaped models free to pitch, yaw, and

roll, such that the damping derivatives at large angle of attack can be

measured.

4. Free-flight model tests should be made at large Reynolds

numbers to allow comparison of model motions with the developed theory.
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BODY CHARACTERISTICS

-2.4d- T
* 1

h.5d 6.5d

mass = 0. 407 slugs Sref = 0. 1963 ft
2

0. 02115 slug-ft2 drf = 0. 5 it

I = 0. 5430 slug-ft
2

AERODYNAMIC CHARACTERISTICS

Case

1 2,3 4

Cx -0. 67 -0. 67 -0. 67

C'2 0.54 0. 54 0, 54

CN.° 7. 55 3.00 1. 70

CNjr - 1.25 -0.50 - 0.z8

CNa.4 0. 057 0. 023 0.013

CNpjo 13.87 -36.98 29. 59

CNPwa - 2.30 6.13 - 4.90

CNp64 0.105 - 0.279 0.223

Cnr ' CMq -51.6 -38.6 -28. 6

CMio= CM , 2  9,42 3.75 2. 12

C"2 - 1. 56 - 0. 621 - 0. 351

CMa 0.071 0. 028 0. 016

Cm P- cm, r 14. 14 -37. S 30. 1

CM 02 - 2. 34 6. Z] - 4.98

CMP'4 0. 107 - 0.28 0.227

CMpr 0 0 0

R 1.2 x 105 4 x 105 5 x 105

TABLE I. BODY PHYSICAL AND AERODYNAMIC CHARACTERISTICS,
FINENESS-RATIO-EIGHT CONE-CYLINDER
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BODY CHARACTERISTICS

3 . 97 d mass ;a9580 slug t

Ix 1, 700,000 slug -ft

IT 1 17, 000, 000 slug-ft
2

Sref 855. 3ft 
2

d rf 33 ft
1. 22 d .F- r

AERODYNAMIC CHARACTERISTICS

Subsonic Transonic Supersonic
Basic C. P. Modified C. P. Basic C. P. Modified C. P.

C- 0..4 1. 085 1.06 - . 06

C'2 0.259 0. ý04 0.418 0.418

CN&0 7. 000 5. 715 b. 570 6. 570

CN&;2 1. 145 0. 935 1. 075 1. 075

CNwa. 0.0471 0.0384 0. 0442 0. 0442
4

PNý' 
T
"

MM 0 3. 66 0 0

CNpa 0  13. 15 0 0.20 0. 20

CNp. - 2. 151 0 0. 033 0. 033

CNpj'4 0. 0884 0 '. 0014 0. 0014

CM-i 7.79b 1. o87 ) , 7* 1. 039

CM 6"2 - . 024 - 0. 633 1 . 297 - 0.302

CMj4 0. 1375 0. 0468 0. 07 0. 020

CM p.0 10.06 0 0. 155 0. 155

CMP i2 I . 64b 0 0. 0025 0. 025

CMp4"4 0. 0670 0 0. 0010 0.0010

CMq - 28.2 - 27.6 - 50.0 - 50.0

Cnr - 14. 1 13 -25. 0 - 25.0

Crr -150.5 -150. 5 -26b. 0 -266.0

C tpr - 15.0 0

CM0 - 3.02' 0.76 0.4 0.2

CM,/ 2  4.45, 5. 35* 0. 65 5. 1 0. 65

CMp /2 
1o. o1

t singlc flap lcntil of 0. 8 diameter
• ased o.;1, f-r .colarisons -lt!, fi. sax-degrcvs-of-iteedom trajectories

TABLE II. PHYSICAL AND AERODYNAMIC CHARACTERISTICS,
TYPICAL LARGE BOOSTER

64



TYPE OF AUTOROTATION AUTOROTATION ATTITUDE - DEG

Small Body Large Body

Magnus 9.5 20.0

Slowly Rolling with 0.7 4. 9
Body-Fixed Strakes

TABLE III.
AUTOROTATION ATTITUDE FOR LARGE AND SMALL BODIES

Case 1 Case 2 Case 3 Case 4

Altitude - ft 54,800 S.L. S.L. 15,200

Vertical Velocity - ft/sec 246 126 126 229

Roll Rate, p - rad/sec 98.3 50.4 50.4 91.7

Surface Speed Ratio - pd/ZV 0. 1 0. 1 0. 1 0. 1

Initial Yaw Rate, r - rad/sec -26. 6 0 51.0 -96. 25

Initial Attitude, 8 - deg 9.36 0 0 2.00

Initial Pitch Rate, q - rad/sec 0 0 0 0

TABLE IV. INITIAL CONDITIONS

"FOR INVESTIGATION OF TRANSIENT MOTION

i OF CONE-CYLINDER BODY
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Approximation Damping & Frequency

Case r I rteady-state Roots Exact Calculated From
dMotion Histories

.1 10 0. J. U1 -0. u840 not measuratle

X 2,3 -0. 0434 + i2 7. 0t -0. 0420 ._ 1Z6. 60 -0. 04Z + 126. 9

2 0.6 k -0. 264

k2,3 -0. 263 + 131.2

3 1.0 -0. 2933 -0. 2935 -0.24

>2,3 -0. 1469 + i151. 02 -0. 1468 + 1i51. 00 -0. 158 + iS1. 0

TABLE V. CHARACTERISTIC ROOTS FOR THE BASIC BODY
CONFIGURATION FOR AUTOROTATION CONDITIONS,
CASES 1, 2, AND 3

INVESTIGATIONS INITIAL CONDITIONS

Magnus
Autorotative Flap Autorotative Moment

Moment

Investigation of Initial Stability

r° = 0 a° = 90, pd/2V = .3 P0 = 0 CMz° = -3.02

* .2

r° = 0 ao = 5" pd/ZV = 3 Po = 0 CMa° = -3.02

Investigation of Descent Trajectory

r° - -. 394 rad/sec 0 0 90. pd/2V = . 3

r° - -3. 15 rad/sec Oo = 90" pd/ZV = .3

TABLE VI. INITIAL CONDITIONS FOR INVESTIGATION OF TRANSIENT
MOTION OF LARGE BOOSTER AT LOW ALTITUDE
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Fc x local cross force
V =descent velocity
Vr = local cross velocity
rx x local velocity due to yaw

Fc FcL Fc Fc

Vr V vr V Vr V Vr V

(a) Symmetric (b)Non-Circular (c)Magnus Effect (d)Flap
Section Section

Anti-Spinning Pro-Spinning
Forces " i Forces

Figure 1. Aerodynamic Force Mechanisms for Autorotative Moments

4 ! c

R = 1,000,0000.8

Cy 
__O\

0.4

0
0 4 8 12 16

- DEG REES

Figure 2. Effect of Flow Incidence on the Side Force
of a Non-Circular Cylinder
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Fineness Ratio R Ref.

Two Dimensional 1,000,000 4
- -- 7 770,000 8

4.8 650,000 7
4.8 * 650,000 7

03 4.0 750,000 6

with four low-aspect-ratio fins
**with nine-rib full-span rotor

,, 4.0
W

-- 3.0--4

0

2.0
0

1.

CL

zU 0 O
"00, 2 0.4 0.6 0.8 1.0

SURFACE SPEED RATIO - PdZ,/V

Figure 3. Correlation of the Subsonic Magnus Force on Finite-Length
Cylinders with the Axis of Spin Normal to the Flow
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[Fineness Ratio R xl1 5  Ref.

7 7.7 8

369 3. 9

------. 9 4.4 9
t3 Two Dimensional 6.0 4
0 Two Dimensional 0.7-1.85 10

0 Two Dimensional 1.0-2.5 10
0

lo0pe

4

LaL

0

a. 2
z
0
0W

0 M-O.

00 20 40 60 s 0

ANGLE OF ATTACK, OC - DEGREES

Figure 4. Correlation of the Magnus Force on Inclined Spinning
Cylinders at Subsonic and Transonic Mach Numbers
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2.0 TWO FLAPS
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U.
W
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0
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Uf)

0

1. 6 SINGLE FLAP

0.0

1.26Z0

U.

,"5: 700W
0 0.8U

I--

z 0.4
0

40- cT'• 6$

(/)
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Figure 5. Effect of Reynolds Number and Flap Position on the Aerodynamic
Characteristics of a Two-Dimensional Lifting Cylinder
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M.3

1.5 M-."
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Ma.5

0.5 
M-.75

0 .05 .10 .15 20 .25 .30

C

d

Figure 6. Effect of Flap Chord and Mach Number on the Lift
Characteristics of a Circular Cylinder, 8= 900

M REF.
4.06 14
1.98 14
1.00 14
.60 14
.20 6

60

-z 40

U.

0 20 40 60 80 100

ANGLE OF ATTACK - DEGREES

Figure 7. Effect of Angle of Attack and Mach Number on the Normal
Force Center of Pressure of Flat-Ended Cylinders
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1.4

1.2

1.0

CN

CN*/Ie 
0.8

Fineness Ratio M Ref.

I1 6.8 0.6 14
0.6 C 0 4.8 low speed 7

Theory 2 , 4.0 low speed 6
As_ N CN Sin o J _

0 20 40 60 80 100

ANGLE OF ATTACK - DEGREES

Figure 8. Effect of Angle of Attack on the Subsonic
Normal Force of Flat-Ended Cylinders

1.0 -__

0.8

0.6
CN

[N/ 0.4

SFineness 
Ratio M Ref.

0.2 - 6.8 1.98 14
No -Nwtonlan A 6.8 4.06 14

Theory

00 20 40 60 80 100
ANGLE OF ATTACK DEGREES

Figure 9. Effect of Angle of Attack on the Supersonic
Normal Force of Flat-Ended Cylinders
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M REF.

0 0.6 16
0 0.6 14
30.6 12

0.6 17
£1 0.6 is

1.2 16

O 1.2 14
O 1.2 17

~- 1.0 - '

R 88,000
o0L REF. 15

0 . oo
u" 0.8 ---.U9.

S0.6

z
0
P- 0.4
0
0.
0

0. 0.2

(D
4

0 0 0 20 30 40 50 60

FINENESS RATIO

Figure 10. Effect of Fineness Ratio on the Finite-Length to
Infinite -Length -Cylinder Drag Coefficient Ratios
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Figure 11. Cross Flow Drag Coefficients for Finite-Length
and Infinite-Length Circular Cylinders
as a Function of Mach Number

x X

-Z z

x y z are fixed-picne axes Vertical

i j i are body-fixed axes

X Y Z are inertial Oearth) reference axes

Figure 12. Coordinate Axes for Equations of Motion

74



10"
cc 10-3//

0 INTEGRATED MOTIONW.O 10"4 At• a.. "U.005 sec BECOMES ERRATIC

0z 10-6 SIO0t= 0

0
w- IO'c 10 At - 0.002 sec.

hii
SI 0"

W
S10-6

0-90

hi 10-1

41071
h" 10"' -1 i.- PERIOo FOR ONE BODY ROIATION

W -3

10.
0 d. d A ' 08 1%0 1!2 1. 14 I'6 %

TIME SECONDS

Figure 13. Effect of Integration Time and Integration Time Interval
on Average Quaternion Error for a Typical Trajectory
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Y,y

N• Ixpicoas + I, cose sine

x

r

z z
XY Plane Horizontal
y axis non-rolling, i.e.,always horizontal

Figure 16. Simplified Force Diagram for Autorotative
Motion of a Rolling and Yawing Body
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Figure 17. Transient Pitching Motion of a Gone-Cylinder Body in Vertical
Descent for Various Initial Fixed-Plane Yawv Rates
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VELOCITY 229 FT./ SEC.

ALTITUDE 15,200 FT.

Body Physical I Aerodynamic
Characteristics -Table I, Case 4

50

40(0I

C,

"o 30
ROLL RATE , p RAD./ SEC.

X - 91.8 (pd/2VzO.10)
20 45.9 (pd/ZVz0.05)

__o 22.9 (pd/2VO0.025)

10
STEADY-STATE

0
0 20 40 60 80 100 120

INITIAL YAW RATE, ro - RAD./SEC.

Figure 18. Effect of Initial Yaw Rate and Roll Rate on the Maximum
Pitch Attitude of a Cone-Cylinder Body During
Autorotation Development in Vertical Descent
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COMPARISON OF AUTOROTATION ATTITUDE[ 40 __ _ __ _ __ _ __ _

ody Physical & Aerodynamic

Characteristics From Table .0 I11
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II I 0rc-.06 d
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SEC.

ROLL P SPA REQUIRMEMET t d

2
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P2:-r,,TAN9

02-4 -5 -6 -
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Figure 19. Steady-State Autorotation Characteristics of a Large-Booster
Configuration in Vertical Descent at Sea Level
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CNpr/2- 13.15 ( pz 2 RAD. / SEC.
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CMz° a 0

AUTOROTATION FROM FLAPS
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Figure 20. Effect of Center-of-Gravity Axial Location on the
Autorotation Characteristics of a Large-Booster
Configuration in Vertical Descent at Sea Level
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Figure 21. Initial Low-Altitude Pitching and Yawing Motions for a

Rolling Large-Booster Configuration. Time Histories
of 8 and 4 for r = 0, a = 900, and pd/ZV= 0. 1.
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Figure 22. Initial Low-Altitude Pitching and Yawing Motions for
Rolling Large-Booster Configuration. Time Histories
of eand q for r =0, a= 90°, and pd/2V 0.2.
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Figure 23. Initial Low-Altitude Pitching and Yawing Motions of a
Rolling Large-Booster Configuration. Time Histories
of 8and* for r = 0, a =90°, and pd/2V= 0.3.
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Figure 24. Initial Low-Altitude Pitching and Yawing Motions of a
Large-Booster Configuration with Flaps. Time Histories
of 8 and• for ro = 0, ao = 900, and CM = -3. 02.
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Figure 25. Initial Low-Altitude Pitching and Yawing Motions of a
Rolling Large-Booster Configuration. Time Histories
of eand 41for ro= 0, a= 5, and pd/ZV= 0.3.'
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Figure 26. Initial Low-Altitude Pitching and Yawing Motion of a
Large-Booster Configuration with Flaps. Time
Histories of 8 and %k for r = 0, a = 50, and
CMz° = -3.02 o 0
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Figure 27. Low-Altitude Autorotative Motion and Trajectory Data for a

Rolling Large-Booster Configuration in Vertical Descent with

a Large Initial Yaw Rate and a Roll Surface Speed Ratio of 0. 3
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Figure 28. Low-Altitude Autorotative Motion and Trajectory Data for a

Rolling Large-Booster Configuration in Vertical Descent with

a Small Initial Yaw Rate and a Roll Surface Speed Ratio of 0. 3
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Figure 29. Re-Entry Motion and Trajectory Data for an Autorotating
Large-Booster Configuration with Small Overturning Moment
and an Autorotative Moment About the z Fixed-Plane Axis
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Figure 30. Re-Entry Motion and Trajectory Data for an Autorotating
Large-Booster Configuration with Large Overturning Moment
and an Autorotative Moment About the z Fixed-Plane Axis
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Figure 31. Autorotative Motion During Vertical Re-Entry for a Large-
Booster Configuration with an Initial Yaw Spin Rate of
2 radians/second

88



AUTOROTATION ATTITUDE

EQUATIONS Of, MOTION
064 12 1IS F 04-8 32 36 40 44 48

FIXED-PLANE YAW RATE
3-

W

I _

00 4 8 12 16 20 24 28 32 36 40 44 46
TIM E- SECONDS

Li VELOCITY
UW6000

(0

-j

0 0 8 12 16 20 24 28 32 36 40 44 46
TIME - SECONDS

12
0 XC0E

40

0 4 S 12 IS 20 24 26 32 36 40 44 48
TIME - SECONDS

Figure 32. Autorotative Motion During Vertical Re-Entry for a Large-
Booster Configuration with Zero Initial Yaw Spin Rate
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INITIAL TYPE OF OVERTURNING AUTOROTATIVE
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MOTION COEFFICIENT COEFFICIENT
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Figure 33. Effect of the Various Re-Entry Motions of a Large-
Booster Configuration on the Variation of Flight

Velocity with Altitude for a 30-Degree Re-Entry Angle
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Figure 34. Effect of Various Re-Entry Motions of a Large-Booster
Configuration on the Variation of Dynamic Pressure
with Altitude for a 30-Degree Re-Entry Angle
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Figure 35. Effect of Various Re-Entry Motions on the Body
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Figure 36. Diagram for Determining Aerodynamic Moments
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Angular Velocity at Large Angle of Attack
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APPENDIX I

AERODYNAMIC MOMENTS DUE TO TRANSVERSE ANGULAR VELOCITY

AND ROLL SPIN AT LARGE ANGLE OF ATTACK

The aerodynamic moment derivatives due to rotation, r, about the

fixed-plane or body-fixed z axes at large angle of attack are herein derived

for a smooth cylindrical body. The flow is assumed to be separated along

the entire leeward side of the body such that the forces on a local section of

the body are due entirely to the cross flow, and thus are independent of the

axial flow. Both the local drag and Magnus forces are considered. The

moments about the y and z axes will be determined, where these axes

may be either fixed-plane or body-fixed.

The analysis is based on the assumptions normally used in strip

theory. The force model is depicted in Figure 36. The moments due to

the elemental forces dF and dFM will be derived independently.

The scalar force dF is defined as

1 2
dF = i- p VN CDC d dx (1)

and the scalar force dFM as

dF 1 p V2 CF pd d dx (2)dFM N pT/2 2VN



The incremental scalar moment dM . due to the force vector.. • z

dF can be expressed as follows:

dM = x' X P d k

x I X -d F - dF k k (3)

- -xdF
y

By letting dF =dFcos C =dF v + xr
y N

dM
and dCMz = 1 z2

-P V Sd

we obtain from (2) and (3), in coefficient form

- CDC [V+ rx] -vw2+ (v+ rx)Z x dx (4)
dMS V2

In a similar manner we obtain the incremental scalar moment

dM due to the force vector dF as
y

dM = [x X • -J

= x dF
y

2



and in coefficient form

CD, w V/w2 + (v+ rx) x dx
dCM =V (6)

The incremental scalar moment dMzM due to the Magnus force

vector dFM can be expressed as follows:

dMzM= x 1 X dFM 'k

= -x dFMy

Letting dFMy dF sin = dFSy M M VN

dMzM

and dCM = d Vz S1 V2
T p Sd

we obtain from (2) and (7) in coefficient form

dM = - C F p2 d x dx (8)
d zM VS Cp /2 2V

Proceeding as above, we find the scalar moment dMyM due to the
-41

Magnus force vector dF M as

dMM [x 1 -F

= -x dFMz

3



and in coefficient form

w(v+ rx) w2 + (v+ rx)2  pd xdx
dCM 2 CFPW/ 2V (10)

In the equations of motion, the aerodynamic moments are entered as

partial derivatives. It is necessary, therefore, to express (4), (6), (8), and

(10) in derivative form. It is also necessary to make the aerodynamic

reference area and length, and the roll and yaw rate parameters consistent

with the aerodynamic force system adopted in the equations of motion. Thus

we now use, consistently

reference area, S = i d 2/4

reference length = d

roll rate parameter = pd/2V

yaw rate parameter = rd/2V

and define the derivatives Cnr and CMpr as

a CMz
Cnr =

2V

CM CMyM
pr -

2v 2v

4



Since (8) is independent of r, we evaluate the incremental value of

Cnr from (4). Making the previously described substitutions, we obtain

or in integral form
22

Cnr 16 CD ' + }1" d+r)

1

We leave CDC under the integral sign because it may be desired to

introduce C as some function of (x/d) to account for three-dimensional

flow effects.

A closed form solution to (11) is not possible, except for special cases.

However, solutions have been obtained for the special cases V = w, V = u,

and V = v, and these permit a great deal of insight into the equation. The

case V = w is particularly significant, since it represents the yaw damping in

a flat spin.

Xd5



The solution for V = w was obtained by using the integration by

parts formulae. The resulting solution with the integration limits

substituted is

(V= w, r E O)

The solutions for V = u and V = v are

8 2D

Cnr d- Cr -D

(13)

(V=u, rX0)

6



and

= 16 di (131 + I ± 4 4
iT =C - 3Ldz d 4 d~d

I. J (14)
(V = v, r ;1 0)

Care must be exercised in evaluating (14), because if x/d is large,

the integral changes sign as a result of the local cross force due to rotation,

r, not being in the same direction as the local cross velocity, VN. It is

easily recognized that equation (14) could be used for CM at a = ir /2, if
q

we let r = q and v = w.

Another special case is the limiting condition r = 0 for V = w.

This leads to

nr - 3Tf CDC [! -dl

(15)

(V = w, r = 0)

To illustrate the non-linear nature of the yaw damping derivative,

Cnr Ias a function of rd/2V, calculations have been made for a fineness-
r

ratio-eight cylinder with the center of rotation at the midpoint. The drag

coefficient CDC is assumed independent of x/d such that the resulting

damping can be presented as the parameter

Cn / -16

Cnr 1 CDC

7



The resulting variations of 1 6 r with rd/2V for V = w, V = u, and

V = v are presented in Figure 37.

At subsonic velocity, bodies of moderate fineness ratio have an

average cross drag coefficient which is considerably less than the two-

dimensional value. Although exact force distribution data are not available,

it is reasonable to assume that the distribution of CDC along the body will

be nearly elliptical. For such a distribution of CDC, it is extremely

useful to have an approximate correction factor for equation (15) such that

laborious numerical integrations of equation (11) can be avoided.

The simplest form of correction is an adjustment in the value of

CDC. This effective value of CDC, when used in equation (15), will then

account for the effect of the elliptical force distribution on the damping

derivative. Such a factor has been evaluated and is found to be exactly

3/4 of the average cylinder cross drag coefficient when the transverse

axis of rotation passes through the midpoint of the cylinder. Of this factor,

3 7 /16 is the ratio of the damping derivative with elliptical cross force

distribution to the damping derivative with constant cross force, and 4/Tr

is the ratio of the equivalent CDC for the elliptical force distribution to

the average cylinder cross drag coefficient for the constant cross force

condition.

The contribution of the Magnus force to the moment about the z axis,

equation (8), is seen to be independent of the yaw rate. In fact, the moment

coefficient CMzM is the basic Magnus moment coefficient which is included

in the linear equations of motion in derivative form as

Mpd 
wC~z ~ p '1"/22V V

magnus

8



The pitching moment coefficients, CMy, and CMyMO as given by

equations (6) and (10), respectively, are both a function of the yaw rate, r;

and (10) is also a function of the roll rate, p.

From (6) we can evaluate CMr in the same manner as we previously

evaluated Cnr. The general form cannot be integrated in closed form, so

only the case of V = w will be presented. The result is

1I

8 ~ 2 -- 1 2 2

The derivative CMr will be zero for rd/2V equal to zero, and

also for (x/d)2 = (x/d). For most configurations, this derivative will be

very small, and hence can be neglected.

From (10) we can evaluate the derivative CMpr, which will be

the pitching moment resulting from the distortion of the Magnus force at

the ends of the body. The distortion, of course, is proportional to the

local velocity at the ends of the body. It will be noted that the form of

equation (10) after differentiation by (pd/2V), is identical to (4) if we

replace CDC by CF pr/2. Therefore, we can express CMpr as

CMpr Cnr (17)
CDC



Thus, equations (12) and (15) can also be used for evaluation of

CMpr for the special case of V = w. This derivative will have a finite

value at r = 0, and will be of a significant magnitude whenever the Magnus

force is present.

10



APPENDIX II

COMPLETE SIX-DEGREES-OF-FREEDOM

EQUATIONS OF MOTION

11



The complete six-degrees-of-freedom equations of motion are

derived in Reference 1, and are presented here for reference only.

Body-Fixed Axes

r v - + 2(XIX 3 -X 0o 2 ) g + F./m

v a pw-iru +2(X2 X 3 XoXI) g + FY/m
2 2 22waq u- p v + (1 0 XO -&\ 2 +X?3 ) g + F. /m

I I

Itr

-q p +" +

22 2 2~

2 2 2 2" *2( 1l 3 -X+ >.0 )i,3)U + (k)- + X2 - )•3)V + 20.2X3 - )O),),W

ion" /2(-)Xp - \ 2q - r)

, I/2( a 1/p - X3q + r

2 = i/2( X3 P + xOq-

,3" 1/2( - )'eP + q+ X)
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Fixed-Plane Axes

a r v - q w +2(\1 X3 - Xo0,2) g + Fx /m

a-2 wr x _ X_- ,•X -ru + F,/m
o + 2 3ý

)ku-v ?1 ) 3 . 0 )k2  2 2 2 2

oI 2 3

I I

or At X >2 3 K +m

*2 2 2 2

X o.) -X I) o) + f3 , I

n' -q 2 r XoX3 X0 +X2 IL I M

.f o - , + ) F , I2 2 2 a

a 2(\+X, -X o - X2 u + - 0 )v + X +

q + X 3r

0 1 XXq+ _ + ,X3 o ql + 2

2 2
X013 X2+X



Aerodynamic Forces and Moments

FLa cx0 +Cx (a2 + ) + ,L x AM
qS 2

a* C [C 12 + CM-at+ M]

p Ld 2 a4

2s " +c-CHPcC (a +, 0) + C a(.@,•a,+ P4)
a4

F2 a C [M CNo+ Cw(a 2 + 7')+ Cm.,(at.+' +LN AM]
q S zCO"2 a4 M1 +co C..(a + 0 )+ C. (a,

NP ~~+ )7 ]
Mx- Ed r,+P m

-• U PdcAM]

q S d 2V + Pp

M C + [M+ CM (a2 +0) + CM (a2+0P)2-+ AM)
q S MYO a 0 a4

pd (2 .) (4 e+P,2)]

MzV Cm -[c +c Cm+ +C(a +p 2 +PMAM]S'C + CM" ++ ? +V) CM+

L 2

_CM c."o +c, -,(a +. e) +c,-,(a .aI aI

14a



Correspondence of the Aeroballistic Derivatives with the Aerodynamic

and Ballistic Nomenclatures

Aeroballistic Aerodynamic Ballistic

Normal Force c - c ,-C K

Magnus Force CN -Cp, C ~p K 16

Pitching Moment CMcI CMG 8C1p KM'8

Pitch Damping C CMqS Cn_ K 16

Magnus Moment Cm,, C_ P 7 Cn. -KT 16

Axial Force (6 = 0) C C) -KD 8

Rolling Moment C'p C'P K1 6

Angle of Attack Definitions

w -1 u

a=Cos v --- I cos -•

22

v +w

15



APPENDIX III

TWO-MOMENT EQUATIONS OF MOTION

FOR A ROLLING AND SPINNING BODY

AT LARGE ANGLE OF ATTACK

Coordinates, Axes, and Basic Equations of Motion. For analysis

of the motions of an axi-symmetric body with roll spin, it is convenient

to use a fixed-plane axis system as depicted in Figure 12, where the

x axis coincides with the missile axis of symmetry. In fixed-plane axes,

the y axis is initially horizontal, and the rotation of the coordinate system

with respect to the inertial referenpe frame is selected such that it stays

horizontal. This axis system is commonly used in aeroballistics (see, for

example, Reference 22).

An extremely important and useful characteristic of this axis system

is that it provides simple relationships between the fixed-plane angular rates

and the Euler angle rates, thus permitting a direct physical interpretation of

the solution. These relationships will be used repeatedly, and are presented

below for reference:

p = '- sin&

q 9 1

r cos 8

where (D = roll orientation of the body with respect to the fixed-plane

reference system.

16



For bodies having mass symmetry (Iy = Iz = I), the fixed-plane
equations of motion for rotation about the y and z axes are

M = 16 + prl + r 2tane (2)y x

M = Ir- -re tane (3)Z x

where M is the aerodynamic moment.

Due to the form of these equations, it is logical to select e and

r as the two basic variables for describing the motion.

Aerodynamic Considerations. At large angle of attack, the

aerodynamic characteristics of a body cannot be accurately expressed

in terms of the normal linear stability derivatives. A more accurate

representation can be achieved by using a power or trigometric series

expansion. However, a reasonably good approx-ibation to the aerodynamic

overturning moment and Magnub moment for small variations of angle of

attack in the neighborhood of a = Ir/2 radians can be obtained by letting

C ( a )= C ( a= sin a

The approximation can be improved by adjustment of C ( a = ir /2) once

an initial determination of the steady-state value of a_ has been accomplished.

To simplify the analysis, it is convenient to define the values of

the overturning moment and Magnus moment coefficients at a = 7"/Z radians

17



as CM ?/ and CMp,./2 , respectively. In these definitions, we retain

the aeroballistic nomenclature for determining the direction and sign of

the moments. Thus the aerodynamic moment definitions used here will

be consistent with the complete six-degrees-of-freedom equations.

To proceed, it is necessary to relate the vector angle of attack to

the attitude variable, e . Because only the rotational motion of the body

is being considered, and we are restricting the motions to large angles of

attack, it is convenient to specify the velocity in the direction of the

Z inertial axis. Thus we obtain

a =7/z+ e
and

sin a = cos e

We can now express the aerodynamic moments M and M in
y z

terms of 6 and r to obtain the following equations of motion:

S+ pr x + 17 tan = C cos e + cm CM ZV (4)
IL IJ ILMV/2 co V pr 2V 2

-p~*1 re tan643-- lCn rd - M, §cs+C l 5
°~~~ ~ _rX -z- r a- n CMpw'/2 2V

The yawing moment, CMzo, has been added to account for geometric

and aerodynamic asymmetry such as would exist when small flaps or

strakes are placed on the body to produce a spin propelling moment. The

derivatives Cnr and CMpr are described in Appendix I, but note that

here we do not include the non-linearities of Cnr with rd/ZV and angle of

attack.
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The derivatives, CMq' CMpr' Cnr, and CMz are not aeroballistic,

and must be interpreted here as fixed-plane derivatives. For example,

CM is not in general a body-fixed moment. Only when p = - ' sin 8

can the body axes have the same roll orientation as the fixed-plane axes.

Thus for Magnus-type spins with large roll rate, CM has no practical

significance.

The derivatives Cnr and CMq must also be distinguished because

of the direction of the velocity vector. If the velocity vector had been placed

along the X inertial axis, then Cnr and CM would be identical as in,r q
aeroballistic theory. However, in the present model the body is always

at large angle of attack, and the effect of the q rotation on the aerodynamic

cross force is completely different from the effect of the r rotation.

Likewise, CM is meaningful only when the motion is at verypr

large angle of attack.

Linearization of the Equations of Motion. The two non-linear

differential equations of motion, equations (4) and (5), can be linearized

by the use of the perturbation theory. We begin by assuming that the

motion of 6 and r can be represented by small deviations about operating

points 6 and r 0 . This leads to the definitions
0 0

e e 0+ A6

and (6)

r= r + Ar
0

For a particular case, 90 and r are constant, so it follows that
A 6= , and r = Ar. It is also useful to introduce the

19



first-order approximations

tan 8 tan 8 0+(secZ 2 ) (e0
(7)

cos e cos 9. -(ýsin eol L~e

Substituting (6) and (7), neglecting second-order terms, and

rearranging, the following two simultaneous linear differential equations

are obtained in operator form, where the operator D denotes derivatives

with respect to time:

D KL CMqD+r 0 sec e0) + K CM, 2 sin I Ae

+ r tan 0o + p f -KL 2 CMpr P I Ar (8)

SI 2
+ r tan o+p - KL M p r - K CM10 cos 8 =0

0 0 pr

(PT+ rotan eo) D - (KL CM p sine 0 ] /k8

(9)

+ [D - KL Cnr] Ar - KLCnr ro + KL CMpp /2 p cos o -K CMzo = 0

where K = qSd/I and L = d/ZV. Equations (8) and (9) are the basic two-

degrees -of-freedom linearized equations of motion.
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Steady-State Solutions. The steady-state solutions to equations (8)

and (9) are obtained by letting A8 = A 6 A6= Ar = Ar = 0 and solving

for r and 0 . We cannot obtain r and 9 explicitly, but the following000 0

equations will be useful for an iterative solution. From equation (9), we

obtain the result

CMpr/a p cos 80 6 CMz
r = r = - (10)

S S O Cnr L Cnr

which can be used directly for approximating r if e is small.
0 0

Substituting equation (10) into equation (8), we obtain the general implicit

expression for 8 as

02
oa

sincos e o p/2 I
M Cnr 0 L Cnr ) cos 80

Ix CMp/2 p KL2 CMpr p CM Pr/2 p cos 80(p; Cnr COS 60 - p(1

r Cnr

CM° IxKLCMpr P Iz K

Cnr p f Cnr CM~r/2 cos 8o = 0

An iterative solution to e0 can be obtained rapidly from equation (11)

when 80 is small, as it normally will be.

For the two types of spinning motion which are principally of interest

(Magnus-type spins with large roll rate, or slowly rolling spins where the

spin propelling moment is generated by a geometric asymmetry such as a
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flap), we can reduce the complexity of the analysis by assuming

1) for Magnus-type spins

CM = 0z 0

Z) for spins propelled by a body-fixed flap

p = - r tan 8, CMp7r/2 = 0, CMpr = 0

Using assumption (1), we obtain for Magnus-type spins the formulae

r = r = -CMp/Z p P cos ()rS s O Cn r (I Z)

K CMr/ 2 - p2 Mp 2 1 2
T nr ICIxp r]

ssin ] 2  (13)
[CMp 7r/z 2

Assumption (2) leads to the results

CMzr = r - (14)

ss 0 L Cnr

and

A zA
sin = sine = --T-+ + 1 (15)
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where (C .

K CM,. 2

For very flat spins, we can let cos 8 1 and obtain a very useful approxi-

mation, which is

1
tan ° - (16)

Characteristic Equation. The third-order characteristic equation

describing the two simultaneous linear differential equations, equations (8)

and (9), is of the form D3 + AD2 + BD + C = 0. Expressed in terms of

the basic Variables, it becomes

3 2D3 +D (-KLCM - KL Cnr

+ D (r sec 80)2 + K sin 8 + (KL) Cnr CM

+ 2 tan 8 r P -# + r tan 8 +p P• - a + r tan6)

2 
(17)

-KLCM P P + r tan 8
pr 0 10

+ [ r sec KLCn - K2 L CM 7r/? Cnr sin
ro seoLCn

1 ]
+ (Z r 0 tan 60 + p 2 CM pr p) (pL sin 80) 0

O C-pr ) C~pr/z p =0
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Stability. It is of interest to know under what conditions the system

as given by equation (17) is stable. The fundamental problem in ascertaining

system stability is one of determining the nature of the roots of the charact-

eristic equation, in particular, the behavior of the system in the neighbor-

hood of steady state. Since the region of stability, rather than the exact

values of the roots, are of greatest interest, the Routh criterion can be

employed.

The Routh criterion permits the definition of boundaries between

stability and instability. In addition, the boundaries can be established

for both the real roots and the real part of the complex roots. For a third-

degree equation, we have the rules:

1) If only C changes from + to - , then one real root

changes from negative to positive, indicating the

inception of static instability.

2) If only AB - C changes from + to - , then the real

part of one complex pair of roots changes from negative

to positive, indicating the inception of dynamic or

oscillatory instability.

The static stability of the Magnus-type spins at steady-state can be

examined by substituting the expressions for r and eo, equations (12)

and (13), into the C coefficient of equation (17). We obtain after

considerable algebraic manipulation

KL CM 2 p K CMCMpr/ 
Ix KL 2 CMpr)

Cp 7r/2 7 Mr/ 2 - p Cnr p

C= Cnr -M -P /

L Cnr

(18)
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where it will be noted that the term in [ e i. s , Equating C to
0

zero, we can therefore find stability boundaries for any pair of variables

appearing in equation (18). We will show one interesting case as an

example. If we let CMr/ 2 , the overturning moment at U = VT/2, equal

zero, we can obtain the boundary equation

CM = - Cnr - CMpr (19)

For Cnr negative, it follows from equation (18) that

CMp7/ 2  > Cnr (- -KL 2 CMpr

on the stable side of the boundary. Thus, there is a minimum Magnus

moment for a statically stable spin.

The dynamic stability boundary AB - C = 0 for Magnus-type spins

in the neighborhood of e° and r is determined in the same manner as

above by substitution of equations (12) and (13) into the appropriate coeffi-

cients of the characteristic equations. The following boundary equation

is then obtained:

AB GC= KK L(CMq +Cnr) + (K L)2 Cnr CM+ p

2 =mpW _P (2q
-KL CMpr p - + sin K CM 2r/ + Cn \p I KL CM0Cnr p q Cpr

SC~ 7r 2 p CMp 7r/2

+ ( n ) } -KL C2 iz s 0 - I = 0

where sin 8 is given by equation (13). (20)
0
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Specific boundaries in tarms uf the aerodynamic variables can be

obtained from equation (20) by numerical analysis.

For the non-Magnus spins described previously, we obtain a useful

form of the static stability boundary for flat spins by letting sin 8 = tan 8

and cos 8 = 1, and by substituting the steady-state solutions as given by

equations (14) and (16) into the coefficient C of the characteristic

equation. We then obtain

CM 2 L n 2  (M,)1

C -Cn jKL( Lý'n) + K L\CM) ýý 1 (21)

Thus this type of spin is statically stable (i. e. , C : 0) as long as C n 0n
r

I

and 1 - I x 0.I

The dynamic stability criteria for the non-Magnus spins with the

same assumptions as above are given by

AB C K L ICM q+GCn) { (C)2 +(. /C nr)
/0

+ KL 2 GrCM+ ( 1  x 2 I ) } (22)LzCnr Cq "p-Z-T

+ Cnr( -nn) KL+ K3 ( CMz )n - I
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Again, it is unnecessary to determine the dynamic stability

boundary because it can be seen that sufficient conditions for stability,

i.e., AB - C -- 0, are Cnr -- 0, CMq x- 0, and ( 1 - Ix/I) :X 0.

Approximate Roots of the Characteristic Equation. By making

certain assumptions about the coefficients of the characteristic equation,

some simplifications may be made for the determination of the roots of

the characteristic polynomial. First, it is assumed that 80 will be small,

and the contributions of the terms containing 80 are negligible. In this

analysis, we also neglect the effect of CM pr. We thus obtain, approximately,

the following analytic expressions for the coefficients

A = - KLCMq - KL Cnr

B = (K L)2 CM C +p + r?q nr p +

2
C= - KL Cnr r

CMpir/Z P
where r Cn Since K Land I /I are very small, thenCnr x

if r is large, we have

r 2 (KL) CMq Cnr + p 2F
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With the above assumptions, the characteristic polynomial becomes

Iz
3  (KL CMq + KL Cnr + r _KL Cnr r 0

To determine the roots of the above cubic, let

IZ
C KL Cnr r

X 1 2 KLCnr
r

This approximates the real root. Factoring ( X - K L Cnr ) from the

cubic gives the quadratic I
2- K L CMqX + r + remainder

The remainder is - (KL ) CMq Cnr X , which we shall assume to be
negligible since (K L) is a small number. The characteristic polynomial

is now

( XI- KL Cnr )( 2 - KL CM q X+r )+ = 0

and the roots are

K L Cnr (23)

K L CM¢• •
2 qC + (KL CMq) 2 -4 r (24)
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K L CM ) wUbeoplx

For Cnr - 0, CMq - 0, and 2 - r, 2,3 lbecomplex.

If in addition, 2 CM r, the complex roots are
2

K 'ý. CM

=X2 = o. + ir (25)

and the angular frequency is the yaw rate.
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